SYNTHESIS OF DERIVATIVES OF 3,5-DIOXOPYRAZOLIDINE

D. Zicane, I. Ravina, Z. Tetere, and M. Petrova

The reaction of monohydrazides of 2-R-4-methylcyclohex-4-ene-1,1-dicarboxylic acids with ethoxymethylenemalonic acid diethyl ester leads to N-(2,2-diethoxycarbonylethylenyl)hydrazides of 2-R-4-methylcyclohex-4-ene-1,1-dicarboxylic acids, which are acylated by the anhydrides of trifluoroacetic and acetic acids with the formation of derivatives of 3,5-dioxopyrazolidine and 5-oxopyrazoline respectively.

Keywords: hydrazides of cyclohexenedicarboxylic acids, 3,5-dioxopyrazolidines, diethyl ester of ethoxymethylenemalonic acid, 5-oxopyrazolines.

We established previously [1] that the interaction of monohydrazides of 2-R-4-methylcyclohex-4-ene-1,1-dicarboxylic acids with acid anhydrides leads to the formation of 4,4-spiro-substituted 3,5-dioxopyrazolidines.

The present work is devoted to the study of the possibility of synthesizing derivatives of 3,5-dioxopyrazolidine under analogous conditions from N-substituted monohydrazides. To obtain the latter the reaction of hydrazides **1a-f** with the diethyl ester of ethoxymethylenemalonic acid (2) was carried out. As in the condensation of ester 2 with arylhydrazines, the reaction of compound 2 with hydrazines **1a-f** occurs exclusively at the enolic ethoxy group of diethyl ethoxymethylenemalonate 2 with the formation of N-(2,2-diethoxycarbonylethylenyl)hydrazides of 2-R-4-methylcyclohex-4-ene-1,1-dicarboxylic acids **3a-f**.

Riga Technical University, Riga LV 1048, Latvia; e-mail: daina_zi@ktf.rtu.lv, marina@osi.lv. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 216-220, February, 2005. Original article submitted January 20, 2003.

0009-3122/05/4102-0187©2005 Springer Science+Business Media, Inc.

Com-	Empirical formula	Found, %				mn °C	Vield %
pound		С	Н	N	Hal	mp, c	1 1010, 70
3a	$C_{17}H_{24}N_2O_7$	<u>55.48</u> 55.43	<u>6.25</u> 6.57	$\frac{7.52}{7.60}$		162-164	91.4
3b	$C_{23}H_{28}N_2O_7$	$\frac{62.05}{62.14}$	$\frac{6.29}{6.36}$	$\frac{6.18}{6.30}$		168-169	78.9
3c	$C_{23}H_{27}FN_2O_7$	<u>59.83</u> 59.76	$\frac{6.02}{5.89}$	$\frac{6.12}{6.06}$	$\frac{4.14}{4.11}$	174-176	75.4
3d	$C_{23}H_{27}ClN_2O_7$	<u>57.46</u> 57.68	$\frac{5.74}{5.68}$	<u>5.58</u> 5.85	$\frac{7.35}{7.40}$	132-134	95.1
3e	$C_{23}H_{27}BrN_2O_7$	<u>52.71</u> 52.78	$\frac{5.06}{5.20}$	$\frac{5.50}{5.35}$	<u>15.53</u> 15.27	137-139	97.9
3f	$C_{23}H_{27}N_3O_9$	<u>56.46</u> 56.44	<u>5.54</u> 5.56	$\frac{8.32}{8.58}$		184-186	80.6
4a	$C_{17}H_{22}N_2O_6$	<u>58.97</u> 58.27	$\frac{6.32}{6.33}$	$\frac{7.87}{7.99}$		153-154	62.9
4b	$C_{23}H_{26}N_2O_6$	$\frac{64.55}{64.77}$	$\frac{5.58}{6.14}$	$\frac{6.76}{6.57}$		131-132	65.1
4c	$C_{23}H_{25}FN_2O_6$	$\frac{62.28}{62.16}$	$\frac{5.80}{5.67}$	$\frac{6.34}{6.30}$	$\frac{4.08}{4.27}$	114-116	68.4
4d	$C_{23}H_{25}ClN_2O_6$	<u>60.06</u> 59.94	$\frac{5.35}{5.47}$	$\frac{6.18}{6.08}$	$\frac{7.71}{7.70}$	138-140	78.9
4 e	$C_{23}H_{25}BrN_2O_6$	$\frac{54.72}{54.66}$	$\frac{4.89}{4.99}$	$\frac{5.70}{5.54}$	<u>15.99</u> 15.81	140-142	78.5
4f	$C_{23}H_{25}N_3O_8$	<u>58.42</u> 58.59	$\frac{5.62}{5.35}$	<u>8.93</u> 8.91		124-125	73.7
5a	$C_{19}H_{24}N_2O_7$	<u>58.13</u> 58.15	<u>6.25</u> 6.16	<u>7.25</u> 7.14		132-133	64.1
5b	$C_{25}H_{28}N_{2}O_{7} \\$	$\frac{63.82}{64.08}$	$\frac{5.92}{6.04}$	$\frac{6.13}{5.98}$		102-103	61.7
5c	$C_{25}H_{27}FN_2O_7$	$\frac{61.83}{61.72}$	<u>5.61</u> 5.59	$\frac{5.83}{5.76}$	<u>3.90</u> 3.91	134-136	81.1
5d	$C_{25}H_{27}ClN_2O_7$	<u>59.95</u> 59.69	<u>5.38</u> 5.41	$\frac{5.36}{5.57}$	$\frac{7.12}{7.05}$	142-143	70.0
5e	$C_{25}H_{27}BrN_2O_7$	<u>54.72</u> 54.85	$\frac{4.91}{4.97}$	$\frac{5.15}{5.12}$	$\frac{14.63}{14.60}$	132-134	71.8
5f	$C_{25}H_{27}N_3O_9$	<u>58.52</u> 58.48	$\frac{5.35}{5.30}$	$\frac{8.21}{8.18}$		183-185	85.7

TABLE 1. Characteristics of the Synthesized Compounds 3-5

On brief boiling of N-substituted hydrazides **3a-f** with trifluoroacetic anhydride diethyl (8-methyl-1,4dioxo-6-R-2,3-diazaspiro[4,5]dec-8-en-2-yl)malonates **4a-f** are formed. Their structures were established on the basis of ¹H NMR spectra and their composition was confirmed by data of elemental analysis. In the ¹H NMR spectra of compounds **4a-f** only one broadened signal was observed at low field for the NH proton at 9.02-10.07 ppm. The characteristic absorption of the *trans*-fixed fragment =CH–NH– as two doublets ($\delta_{=CH}$ 7.49-7.98, δ_{NH} 9.98-10.23 ppm) and the broadened low-field signal of the carboxyl group protons, recorded in the ¹H NMR spectra of compounds **3a-f**, were absent.

Reaction of hydrazides **3a-f** with acetic anhydride occurs on boiling the initial products for 1 h and leads to the formation of analogous cyclic but already acetylated products. The presence in the molecule of 3,5-dioxopyrazolidine of two nucleophilic centers affords the possibility of forming products of both O-acylation (**A**) and also N-acylation (**B**). It is not possible to form an opinion on the site of acylation from data of ¹H NMR spectra and elemental analysis. The choice in favor of the O-acyl product was made by us on the basis of the results of [1] and on the data of IR spectra, in which high frequency absorption bands were observed for the ester carbonyl of an acetoxy group at 1700-1716 cm⁻¹ and there was no absorption for amide carbonyl and NH groups.

Com-	IR spectrum, v. cm ⁻¹		
pound	C=O	NH	'H NMR spectrum, δ , ppm (SSCC, <i>J</i> , Hz)*
1	2	3	4
3a	1740, 1700, 1680, 1640	3315-3215	1.21 (3H, t, $J = 7$, CH ₃); 1.25 (3H, t, $J = 7$, CH ₃); 1.66 (3H, s, CH ₃); 1.97-2.20 (4H, m, 2CH ₂); 2.58 (2H, m, 2CH); 4.21 (4H, m, 2CH ₂); 5.42 (1H, m, =CH–); 7.98 (1H, d, $J = 12.5$, =CH–); 9.48 (1H, br. s, NH); 10.16 (1H, d, J = 12.5, NH): 11.20 (1H, br. s, COOH)
3b	1748, 1700, 1690, 1650	3300-3200	1.22 (3H, t, $J = 7$, CH ₃); 1.25 (3H, t, $J = 7$, CH ₃); 1.67 (3H, s, CH ₃); 2.28-2.89 (4H, m, 2CH ₂); 3.61 (1H, m, CH); 4.07 (4H, q, $J = 7$, 2CH ₂); 5.44 (1H, m, =CH–); 7.16 (5H, m, Ar); 7.69 (1H, d, $J = 13$, =CH); 9.13 (1H, br. s, NH); 9.29 (1H, br. s, COOH); 9.93 (1H, d, $J = 13$, NH)
3c	1742, 1702, 1675, 1617	3330-3220	1.22 (3H, t, $J = 7$, CH ₃); 1.25 (3H, t, $J = 7$, CH ₃); 1.71 (3H, s, CH ₃); 2.26-2.82 (4H, m, 2CH ₂); 2.65 (1H, m, CH); 4.13 (4H, q, $J = 7$, 2CH ₂); 5.49 (1H, m, =CH–); 6.78-7.24 (4H, m, Ar); 7.73 (1H, d, $J = 13$, =CH); 9.29 (1H, br. s, NH); 9.93 (1H, d, $J = 13$, NH); 10.31 (1H, br. s, COOH)
3d	1738, 1700, 1670, 1615	3328-3220	1.23 (3H, t, <i>J</i> = 7, CH ₃); 1.25 (3H, t, <i>J</i> = 7, CH ₃); 1.69 (1H, s, CH ₃); 2.19-2.93 (4H, m, 2CH ₂); 3.63 (1H, m, CH); 4.15 (4H, q, <i>J</i> = 7, 2CH ₂); 5.51 (1H, m, =CH); 7.26 (4H, m, Ar); 7.76 (1H, d, <i>J</i> = 14, =CH–); 9.15 (1H, br. s, NH); 9.87 (1H, d, <i>J</i> = 14, NH); 9.92 (1H, br. s, COOH)
3e	1734, 1702, 1670, 1620	3350-3220	1.21 (3H, t, <i>J</i> = 7, CH ₃); 1.23 (3H, t, <i>J</i> = 7, CH ₃); 1.62 (3H, s, CH ₃); 1.84-2.91 (4H, m, 2CH ₂); 3.78 (1H, m, CH); 4.12 (4H, q, <i>J</i> = 7, 2CH ₂); 5.49 (1H, m, =CH); 7.16 (2H, m, <i>J</i> = 8, Ar); 7.44 (2H, m, <i>J</i> = 8, Ar); 7.69 (1H, d, <i>J</i> = 14, =CH–); 10.29 (1H, d, <i>J</i> = 14, NH); 11.10 (1H, br. s, NH); 11.50 (1H, br. s, COOH)
3f	1730, 1715, 1680, 1615	3400-3310	1.21 (3H, t, <i>J</i> = 7, CH ₃); 1.23 (3H, t, <i>J</i> = 7, CH ₃); 1.71 (3H, s, CH ₃); 1.92-2.93 (4H, m, 2CH ₂); 4.05 (1H, m, CH); 4.13 (4H, q, <i>J</i> = 7, 2CH ₂); 5.59 (1H, m, CH); 7.49 (2H, m, <i>J</i> = 8, Ar); 7.69 (1H, d, <i>J</i> = 13, =CH–); 8.15 (2H, m, <i>J</i> = 8, Ar); 10.25 (1H, d, <i>J</i> = 13, NH); 10.96 (1H, br. s, NH); 11.10 (1H, br. s, COOH)
4a	1740, 1720, 1680, 1610	3100	1.29 (3H, t, <i>J</i> = 7, CH ₃); 1.32 (3H, t, <i>J</i> = 7, CH ₃); 1.69 (3H, s, CH ₃); 1.89-2.33 (6H, m, 3CH ₂); 4.24 (2H, q, <i>J</i> = 7, CH ₂); 4.31 (2H, q, <i>J</i> = 7, CH ₂); 5.38 (1H, m, =CH–); 8.08 (1H, s, =CH–); 10.07 (1H, br. s, NH)
4b	1745, 1730, 1680, 1610	3220	1.21 (6H, m, 2CH ₃); 1.71 (3H, s, CH ₃); 1.92-3.38 (5H, m, 2CH ₂ , CH); 4.26 (4H, m, 2CH ₂); 5.43 (1H, m, CH); 7.16 (5H, m, C ₆ H ₅); 7.96 (1H, s, =CH–); 9.78 (1H, br. s, NH)
4c	1740, 1720, 1680, 1610	3210	1.25 (3H, t, <i>J</i> = 7, CH ₃); 1.28 (3H, t, <i>J</i> = 7, CH ₃); 1.76 (3H, s, CH ₃); 2.02–2.99 (4H, m, 2CH ₂); 3.33 (1H, m, CH); 4.18 (4H, q, <i>J</i> = 7, 2CH ₂); 5.38 (1H, m, =CH–); 6.89-7.11 (4H, m, Ar); 7.96 (1H, s, =CH–); 9.60 (1H, br. s, NH)
4d	1740, 1725, 1685, 1620	3230	1.29 (3H, t, <i>J</i> = 7, CH ₃); 1.31 (3H, t, <i>J</i> = 7, CH ₃); 1.82 (3H, s, CH ₃); 2.09-3.39 (5H, m, CH); 3.39 (5H, m, 2CH ₂ , CH); 4.21 (4H, q, <i>J</i> = 7, 2CH ₂); 5.42 (1H, m, =CH–); 7.05-7.21 (4H, m, Ar); 9.02 (1H, s, =CH–); 9.02 (1H, br. s, NH)
4e	1745, 1720, 1682, 1615	3210	1.22 (3H, t, <i>J</i> = 7, CH ₃); 1.25 (3H, t, <i>J</i> = 7, CH ₃); 1.73 (3H, s, CH ₃); 1.97–3.01 (4H, m, 2CH ₂); 3.36 (1H, m, CH); 4.19 (4H, q, <i>J</i> = 7, 2CH ₂); 5.39 (1H, m, =CH–); 7.05-7.42 (4H, m, Ar); 8.02 (1H, s, =CH–); 9.36 (1H, br. s, NH)
4f	1740, 1716, 1680, 1610	3200	1.25 (6H, m, 2CH ₃); 1.78 (3H, s, CH ₃); 2.09-3.09 (4H, m, 2CH ₂); 3.53 (1H, m, CH); 4.21 (4H, m, 2CH ₂); 5.49 (1H, m, CH); 7.31 (2H, m, Ar); 8.11 (3H, m, Ar, =CH–); 9.97 (1H, br. s, NH)

TABLE 2. Spectral Characteristics of the Synthesized Compounds

TABLE 2 (continued)

1	2	3	4
5a	1760, 1732, 1700, 1630		1.22 (6H, t, <i>J</i> = 7, 2CH ₃); 1.66 (3H, s, CH ₃); 1.86-2.38 (6H, m, 3CH ₂); 2.53 (3H, s, CH ₃); 4.11 (4H, q, <i>J</i> = 7, 2CH ₂); 5.28 (1H, m, =CH–); 7.44 (1H, s, =CH–)
5b	1770, 1745, 1715, 1645		1.27 (6H, t, <i>J</i> = 7, CH ₃); 1.29 (3H, t, <i>J</i> = 7, CH ₃); 1.76 (3H, s, CH ₃); 2.04 (3H, s, CH ₃); 2.11-3.01 (4H, m, 2CH ₂); 3.22 (1H, m, CH); 4.22 (2H, q, <i>J</i> = 7, CH ₂); 4.25 (2H, q, <i>J</i> = 7, CH ₂); 5.38 (1H, m, =CH–); 7.21 (1H, s, =CH–); 7.25 (5H, m, Ar)
5c	1760, 1740, 1716, 1640		1.22 (3H, t, $J = 7$, CH ₃); 1.25 (3H, t, $J = 7$, CH ₃); 1.73 (3H, s, CH ₃); 2.13 (3H, s, CH ₃); 2.07-3.02 (4H, m, 2CH ₂); 3.24 (1H, m, CH); 4.18 (2H, q, $J = 7$, CH ₂); 4.23 (2H, q, J = 7, CH ₂); 5.37 (1H, m, =CH–); 7.04 (4H, m, Ar); 7.07 (1H, m, =CH–)
5d	1765, 1740, 1715, 1640		1.27 (6H, t, <i>J</i> = 7, CH ₃); 1.29 (3H, t, <i>J</i> = 7, CH ₃); 1.73 (3H, s, CH ₃); 2.02-2.89 (4H, m, 2CH ₂); 2.17 (3H, s, CH ₃); 3.22 (1H, m, CH); 4.18 (4H, m, 2CH ₂); 5.41 (1H, m, =CH–); 7.16 (1H, s, =CH–); 7.21 (4H, m, Ar)
5e	1760, 1740, 1715, 1640		1.24 (3H, t, <i>J</i> = 7, CH ₃); 1.27 (3H, t, <i>J</i> = 7, CH ₃); 1.71 (3H, s, CH ₃); 2.07-2.93 (4H, m, 2CH ₂); 3.21 (1H, m, CH); 4.18 (4H, m, 2CH ₂); 5.28 (1H, m, =CH–); 7.11 (2H, m, <i>J</i> = 8, Ar); 7.11-7.38 (5H, m, Ar, =CH–)
5f	1765, 1730, 1716, 1640		1.26 (3H, t, $J = 7$, CH ₃); 1.28 (3H, t, $J = 7$, CH ₃); 1.73 (3H, s, CH ₃); 2,16 (3H, s, CH ₃); 2.02-3.07 (4H, m, 2CH ₂); 3.42 (1H, m, CH); 4.18 (2H, q, $J = 7$, CH ₂); 4.21 (2H, q, J = 7, CH ₂); 5.38 (1H, m, =CH–); 7.29 (2H, m, $J = 8$, Ar); 7.32 (1H, s, =CH); 8.16 (2H, m, $J = 8$, Ar)

* Compounds **3c,f** in DMSO-d₆, remainder in CDCl₃.

EXPERIMENTAL

The ¹H NMR spectra were obtained on a WH 90/DS (90 MHz) instrument, solvents were CDCl₃ and DMSO-d₆, internal standard was HMDS (0.055 ppm). The IR spectra were recorded on a Specord 75 instrument for suspensions in nujol and hexafluorobutadiene. The homogeneity of the compounds obtained was checked by TLC on Silufol plates in the solvent system chloroform–methanol–acetic acid, 95:5:5.

Monohydrazides **1a-f** were synthesized by us previously in [3]. The diethyl ester of ethoxymethylenemalonic acid (**2**) was given by BAPEKS.

N-(2,2-Diethoxycarbonylethylenyl)hydrazides of 2-R-4-Methylcyclohex-4-ene-1,1-dicarboxylic Acids (3a-f). A suspension of hydrazide 1a-f (5 mmol) and an equimolar quantity of diethyl ester 2 in ethanol (40 ml) was boiled for 1 h. Half of the ethanol was distilled off, water (\sim 10 ml) was added to the residue, and the mixture left for 10-12 h. The mixture was filtered, and the product recrystallized for analysis from ethanol.

Diethyl (8-Methyl-1,4-dioxo-6-R-2,3-diazaspiro[4,5]dec-8-en-2-yl)methylenemalonate (4a-f). Hydrazide 3a-f (1 mmol) was boiled in trifluoroacetic anhydride (1.5 ml) for 1 h. The trifluoroacetic anhydride was distilled off, and the residue rubbed with hexane. The mixture was filtered, and the solid recrystallized from ethanol–water, 1:1.

Diethyl (4-Acetoxy-8-methyl-1-oxo-6-R-2,3-diazaspiro[4,5]deca-3,7-dion-2-yl)methylenemalonate (5a-f). Hydrazide 3a-f (1 mmol) was boiled in acetic anhydride (1.5 ml) for 1 h. The acetic anhydride was distilled off, water (~10 ml) was added to the residue, and the mixture stirred for 1 h. The aqueous solution was decanted, and the solidified oil was recrystallized from ethanol.

REFERENCES

- 1. D. R. Zicane, Z. F. Tetere, I. A. Rijkure, M. V. Petrova, E. Yu. Gudriniece, and U. O. Kalejs, *Khim. Geterotsikl. Soedin.*, 903 (2000).
- 2. D. Zicane, Z. Tetere, I. Ravina, and M. Petrova, RTU 43. Starptautiska zin. konf., Riga, 59 (2002).
- 3. D. R. Zicane, I. T. Ravina, I. A. Rijkure, Z. F. Tetere, E Yu. Gudriniece, and U. O. Kalejs, *Zh. Org. Khim.*, **36**, 521 (2000).