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The stephacidins and related alkaloids are a distinctive class
of bioactive prenylated indole alkaloids[1] isolated from
various terrestrial and marine fungal sources.[2–4] Recently,
we reported an enantioselective route to stephacidin A (1,
Figure 1).[5] Although our synthesis permitted the assignment

of relative configuration, the lack of an authentic sample and
an optical rotation measurement left the absolute configu-
ration of 1 a mystery.[7] The highest oxidized member in this
family of natural products, avrainvillamide (3, first isolated by
Fenical et al.),[2c,6] also posed some unanswered questions.
Specifically, the unique oxidation pattern (3-alkylidene-3H-
indole-1-oxide) present in 3 is the first of its sort in a natural
product[2] and required new methodology for its installation.
Although it appeared logical to target 3 through a natural
progression of oxidative transformations from the parent
stephacidin A (1), the execution of this plan was uncertain.
For instance, the benzopyran subunit of 1 is susceptible to
oxidation under many of the conditions used for the oxidation
of amines to nitrones.[8] Herein, we present the following
results: 1) a streamlined enantioselective synthesis of both
antipodes of 1, 2) the absolute configuration of this family of
alkaloids, 3) the verification of the structure of avrainvilla-
mide (CJ-17,665; (+)-3) through reisolation and total syn-
thesis, 4) an approach to the chemoselective conversion of
(+)-1 into (+)-3, and 5) the spontaneous dimerization of (+)-
3 to stephacidin B ((�)-2).

Our first synthesis[5] of (�)-1 could be shortened and
rendered more amenable to scale-up by making the mod-
ifications as illustrated in Scheme 1. The superfluous protec-
tion and oxidation of the ester side chain was avoided by using
proline derivative 6,[9] which was able to undergo peptide
coupling with 5[5] without intramolecular cyclization to form a
g-lactam. This undesired cyclization could be avoided when
amine 6 was immediately subjected to peptide coupling to
furnish 7. The yield of the key enolate coupling (8 to 9) was
improved (61% yield along with 8% recovered starting
materials), and the reproducibility of the thermal annulation
(10 to 1) was enhanced by using sulfolane as solvent at a
higher temperature (240 8C). By this route, (+)-1 or (�)-1
could be prepared in seven steps (12% overall yield) from
readily available 5 and (R)- or (S)-6, respectively. Although
one could make an educated guess regarding the absolute
configuration of these natural products by comparison to the
paraherquamides, brevianamides, and other bicyclo-
[2.2.2]diazaoctane alkaloids,[1] we elected to use natural (S)-
proline until this uncertainty was resolved.

On the basis of the assumption that 3 is produced in
nature by oxidation of 1, we collaborated with Professor
Fenical et al. (Scripps Institution of Oceanography) to obtain
a sample of natural 3 as the original isolated compound was
no longer available. Our hope was that 3 could be reduced to 1
to ascertain its absolute configuration. Careful analysis of the
crude extracts indicated the presence of not only avrainvilla-
mide (3) but also stephacidin A (1). Stephacidin B (2) was not
detected by LC-MS. With a natural sample of (+)-1 in hand
the issue of absolute configuration could be addressed.[10] As
shown in Figure 2, comparison of the CD spectra of synthetic
(�)-1 and natural (+)-1 revealed that the enantiomer had
been synthesized previously in these laboratories. The use of
(R)-proline to secure the enantiomer of amine 6 eventually
led to the preparation of (+)-1 with the correct absolute
configuration (synthetic (+)-1: [a]D = ++ 68.5 (c = 0.35, 1:1
CH2Cl2/MeOH); natural (+)-1: [a]D = ++ 61.5 (c = 0.26, 1:1
CH2Cl2/MeOH).
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With a shorter synthetic route and the
absolute configuration of 1 determined, atten-
tion was turned to exploring its conversion
into 3. In the meantime, we had received a
sample of aspergamide A (4) from Professor
Axel Zeeck.[10] Surprisingly, analysis of the
material indicated that it had transformed to
(+)-3 by dehydration (Scheme 2). We there-
fore targeted 4 as a logical precursor to 3. In
principle, the conversion of 1 into 3 could be
carried out by chemoselective oxidation of the
indole at C3 followed by conversion of the
resulting C3-hydroxyindolenine into the cor-
responding nitrone. In the event, photooxida-
tion with 1O2

[11] gave hydroxyindolenine 11 in
good yield (Scheme 2). However, all attempts
to carry out further oxidation to aspergami-
de A (4) met with failure. A variety of oxidants

Figure 1. Structures of the stephacidins and related alkaloids along with their proposed[2, 3]

biogenetic relationships and absolute configuration.

Scheme 1. Second-generation enantioselective total synthesis of stephacidin A (1). Reagents and conditions: a) 6 (1.0 equiv), HATU (1.1 equiv),
iPr2EtN (3.0 equiv), DMF, 25 8C, 12 h, 81%; b) [Pd2(dba)3·CHCl3] (0.2 equiv), Et3SiH (40 equiv), Et3N (2.0 equiv), CH2Cl2, 25 8C, 3.5 h; then DMF/
MeOH (3:1), 4 h; 80% overall; c) NaHMDS (1.1 equiv), THF, �78 8C, 30 min then MOMCl (1.4 equiv), THF, �78!25 8C, 1.5 h, 95 %; d) LDA
(2.2 equiv), THF, �78 8C, 5 min then Fe(acac)3 (2.2 equiv), THF, �78!25 8C, 1 h, 61% 9 with 8% recovered 8 ; e) B-bromocatecholborane
(1.5 equiv), CH2Cl2, 0 8C, 40 min, 78%; f) MeMgBr (5.0 equiv), toluene, 25 8C, 1 h, then Burgess reagent (2.0 equiv), benzene, 50 8C, 30 min, 88%
overall; g) sulfolane, 240 8C, 1 h, 45%. Cbz= carbobenzyloxy; Boc= tert-butoxycarbonyl; HATU= O-(7-azabenzotriazol-1-yl)-N,N,N’,N’-tetramethyl-
uronium hexafluorophosphate; DMF =N,N-dimethylformamide; dba = trans, trans-dibenzylideneacetone; NaHMDS = sodium bis(trimethylsilyl)
amide; MOM= methoxymethyl; LDA= lithium diisopropylamide; acac= acetylacetonate; Burgess reagent= MeO2CN�SO2N

+Et3.

Scheme 2. Attempted conversion of 1 into 3 or 4. Reagents and conditions: a) likely occur-
red gradually during storage/shipping, 100%; b) sunlamp, cat. methylene blue, 3O2, MeOH,
�28 8C, 30 min; then DMS (100 equiv), �28!25 8C, 10 min, 80 %. DMS =dimethyl sulfide.

Figure 2. Circular dichroism (CD) spectra (CH2Cl2, 25 8C) of
synthetic (�)-1 (a) and natural (+)-1 (c). [q] = molar
ellipticity.
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that were screened to convert either 1 or 11 into either 3 or 4
were similarly unsuccessful. These shortcomings forced a
reevaluation of our planned pathway to avrainvillamide.

In 1971, Somei put forth a provocative hypothesis for the
role of 1-hydroxyindoles (tautomers of saturated indolic
nitrones) in the biosynthesis and functionalization of indole
alkaloids in nature.[12] These highly reactive species are
susceptible to nucleophilic attack and dimerization, and
undergo a variety of interesting rearrangements. These
pioneering studies led us to hypothesize that perhaps such a
species would be a viable precursor to 3. As a proof of
principle, model compound 12 was synthesized by a route that
paralleled our synthesis of 1.[13] As shown in Scheme 3,
chemoselective reduction of the indole C2�C3 p bond with
sodium cyanoborohydride in acetic acid (Gribble reduc-
tion)[14] gave indoline 13 (53% yield), poised for Somei
oxidation.[12] Treatment of 13 with catalytic Na2WO4·2 H2O
and excess H2O2 did not lead to appreciable amounts of the
expected 1-hydroxyindole 14. Instead, we were pleased to
find that the major constituent in the crude reaction mixture
was the bright yellow a,b-unsaturated nitrone 15 isolated in
approximately 30 % yield (unoptimized).

With a method in hand for the desired oxidative
conversion, we turned our attention to stephacidin A (1)
once again. Gribble reduction of synthetic (+)-1 furnished
indoline 16 (Scheme 3) in essentially quantitative yield as a
separable but inconsequential mixture of diastereomers. This
mixture was subjected to Somei oxidation, which unfortu-
nately provided about 20% yield of (+)-3 mixed with some
inseparable impurities. Alternatively, indoline 16 could be
treated with catalytic SeO2

[15] and excess H2O2 to provide pure
(+)-3 in 27 % isolated yield along with 50 % recovered 16
(spectroscopically identical to the samples obtained from
Prof. Zeeck and Prof. Fenical and that reported by Myers;[6]

synthetic (+)-3 : [a]D = ++ 11 (c = 0.1, CHCl3); natural (+)-3 :
[a]D = ++ 10.6 (c = 0.17, CHCl3). We speculate that this cas-
cade oxidation proceeds via the putative intermediate 1-
hydroxyindole 17, which is further oxidized directly to 3 or
perhaps first to 4 (Figure 1) followed by loss of water to form
(+)-3.

In accord with Herzon and Myers� observations in the
unnatural series,[6] synthetic (+)-3 underwent spontaneous
dimerization to (�)-2 under a variety of conditions, including
exposure to silica gel (during preparative TLC), base
(Et3N),[6] or even simple evaporation from DMSO (synthetic
(�)-2 was spectroscopically identical to a sample obtained
from BMS[2a] and to that reported by Myers;[6] optical rotation
of synthetic (�)-2 : [a]D =�33 (c = 0.1, CDCl3); natural (�)-2
(as received from BMS): [a]D =�21.1 (c = 0.19, CDCl3); (+)-
2 :[6] [a]D = ++ 91 (c = 0.25, CH3CN)). The ease with which the
dimerization took place actually hampered purification of 3.
Likewise, 2 underwent facile retrodimerization back to a
mixture of 3 and 2 during chromatography. A final issue that
needed to be addressed was the true identity of CJ-17,665[2d] as
slight differences between synthetic 3 and the reported
1H NMR spectra of CJ-17,665 were observed by both us and
Herzon and Myers.[6] Comparison (LC-MS, TLC, NMR
spectroscopy) with an authentic sample from Pfizer confirms
that it is indeed 3, and, perhaps not surprisingly, the sample
contained approximately 20% of stephacidin B (2) as judged
by 1H NMR spectral analysis and LC-MS.[16] Interestingly, the
sample from Pfizer was provided as a (yellow) solution in
DMSO, whereas the sample from Professor Zeeck (see above)
was a yellow–green powder and contained no stephacidin B (as
judged by 1H NMR spectroscopy), which implies that dimeri-
zation does not occur over time in the solid state.

The spontaneous (and reversible) dimerization of 3 to 2 is
consistent with the known tendency of saturated indolic
nitrones (a tautomeric form of a 1-hydroxyindole) to dimer-
ize.[12] Taken together, these findings add further support for
Somei�s hypothesis regarding the potentially widespread
significance of fleeting 1-hydroxyindoles in nature. The new
selenium- and tungsten-based protocols reported herein to
chemoselectively generate an unsaturated nitrone group from
an easily accessible indoline should facilitate the synthesis of
avrainvillamide and stephacidin mimics for biological explo-
rations.[16]
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Scheme 3. Synthesis of simple avrainvillamide model 15 and the
successful conversion of (+)-1 into (+)-3 and (�)-2. Reagents and
conditions: a) NaBH3CN (10 equiv), AcOH, 25 8C, 12 h, 53%;
b) Na2WO4·2H2O (0.2 equiv), aq. 35% H2O2 (50 equiv), MeOH, H2O,
25 8C, 6 h, ca. 30%; c) NaBH3CN (50 equiv), AcOH, 25 8C, 24 h, 93 %;
d) SeO2 (0.25 equiv), 35 % H2O2 (50 equiv), dioxane, 25 8C, 40 h, 27%
3 with 50% recovered 16 ; e) Procedure A: Preparative TLC (SiO2,
EtOAc); Procedure B:[6] Et3N (excess), CH3CN, 25 8C, 1 h; Procedure C:
DMSO, then solvent removal, approx. 2:1 mixture of 3 to 2, purified by
preparative TLC. PMB =p-methoxybenzyl; DMSO= dimethyl sulfoxide.

Communications

3894 � 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org Angew. Chem. Int. Ed. 2005, 44, 3892 –3895

http://www.angewandte.org


.Keywords: alkaloids · natural products · stephacidin ·
total synthesis

[1] a) R. M. Williams, E. M. Stocking, J. F. Sanz-Cervera, Top. Curr.
Chem. 2000, 209, 97 – 173; b) M. Somei, F. Yumada, Nat. Prod.
Rep. 2005, 22, 73 – 103.

[2] a) J. Qian-Cutrone, S. Huang, Y.-Z. Shu, D. Vyas, C. Fairchild, A.
Menendez, K. Krampitz, R. Dalterio, S. E. Klohr, Q. Gao, J. Am.
Chem. Soc. 2002, 124, 14 556 – 14557; b) J. Qian-Cutrone, K. D.
Krampitz, Y.-Z. Shu, L.-P. Chang, S. E. Lowe, U.S. Patent
6,291,461, 2001 [Chem. Abstr. 2001, 135, 236411]; c) Isolation of
avrainvillamide from a marine fungus off the coast of the
Bahamas: W. Fenical, P. R. Jensen, X. C. Cheng, U.S. Patent
6,066,635, 2000 [Chem. Abstr. 2000, 132, 346709]; d) Avrainvil-
lamide was isolated independently from a soil sample collected
in Venezuela and named CJ-17,665: Y. Sugie, H. Hirai, T.
Inagaki, M. Ishiguro, Y. Kim, Y. Kojima, T. Sakakibara, A.
Sakemi, Y. Suzuki, L. Brennan, J. Duignan, L. H. Huang, J.
Sutcliffe, N. Kojima, J. Antibiot. 2001, 54, 911 – 916.

[3] F. von Nussbaum, Angew. Chem. 2003, 115, 3176 – 3179; Angew.
Chem. Int. Ed. 2003, 42, 3068 – 3071.

[4] For studies towards the total synthesis of the stephacidins or
avrainvillamide, see: A. G. Myers, S. B. Herzon, J. Am. Chem.
Soc. 2003, 125, 12 080 – 12081; L. A. Adams, C. R. Gray, R. M.
Williams, Tetrahedron Lett. 2004, 45, 4489 – 4493.

[5] P. S. Baran, C. A. Guerrero, N. B. Ambhaikar, B. D. Hafen-
steiner, Angew. Chem. 2005, 117, 612 – 615; Angew. Chem. Int.
Ed. 2005, 44, 606 – 609.

[6] While this manuscript was under review, beautiful total synthe-
ses of (�)-avrainvillamide and (+)-stephacidin B were reported:
S. B. Herzon, A. G. Myers, J. Am. Chem. Soc. 2005, 127, 5342 –
5344.

[7] J. Qian-Cutrone, Bristol-Meyers-Squibb, personal communica-
tion.

[8] For example, see: V. B. Sharma, S. L. Jain, B. Sain, Tetrahedron
Lett. 2003, 44, 3235 – 3237.

[9] Proline 6 was synthesized by hydroboration, oxidation, ester-
ification, and deprotection of the corresponding Cbz-protected
enantiopure allylated proline, see: D. Seebach, M. Boes, R. Naef,
W. B. Schweizer, J. Am. Chem. Soc. 1983, 105, 5390 – 5398; M. G.
Hinds, J. H. Welsh, D. M. Brennand, J. Fischer, M. J. Glennie,
N. G. J. Richards, D. L. Turner, J. A. Robinson, J. Med. Chem.
1991, 34, 1777 – 1789.

[10] J. Fuchser, PhD Thesis, University of G�ttingen, 1995.
[11] M. Nakagawa, H. Watanabe, S. Kodato, H. Okajima, T. Hino,

J. L. Flippen, B. Witkop, Proc. Natl. Acad. Sci. USA 1977, 74,
4730 – 4733.

[12] For extensive reviews, see: M. Somei, Heterocycles 1999, 50,
1157 – 1211; M. Somei, Adv. Het. Chem. 2002, 82, 101 – 155.

[13] Model 12 had identical spectral properties to those reported,
see: R. M. Williams, T. Glinka, E. Kwast, H. Coffman, J. K.
Stille, J. Am. Chem. Soc. 1990, 112, 808 – 821.

[14] G. W. Gribble, P. D. Lord, J. Skotnicki, S. E. Dietz, J. T. Eaton,
J. L. Johnson, J. Am. Chem. Soc. 1974, 96, 7812 – 7814.

[15] S.-I. Murahashi, T. Shiota, Tetrahedron Lett. 1987, 28, 2383 –
2386.

[16] Detailed experimental procedures and copies of all spectral data
for 15, (+)-1, (+)-3, and (�)-2 are available in the Supporting
Information.

Angewandte
Chemie

3895Angew. Chem. Int. Ed. 2005, 44, 3892 –3895 www.angewandte.org � 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.angewandte.org

