

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Bioorganic & Medicinal Chemistry Letters 13 (2003) 3367-3370

Synthesis of 3-Phenylpyrazolo[4,3-*b*]pyridines Via a Convenient Synthesis of 4-Amino-3-arylpyrazoles and SAR of Corticotropin-Releasing Factor Receptor Type-1 Antagonists

Keith Wilcoxen, Charles Q. Huang, James R. McCarthy, Dimitri E. Grigoriadis and Chen Chen*

Department of Medicinal Chemistry and Department of Pharmacology, Neurocrine Biosciences, Inc., 10555 Science Center Drive, San Diego, CA 92121, USA

Received 28 January 2003; accepted 14 April 2003

Abstract—3-Phenylpyrazolo[4,3-*b*]pyridines were synthesized via a cyclization of 4-amino-3-phenylpyrazoles 11–13 with ethyl acetoacetate. These compounds were found to be potent CRF_1 antagonists. The 2-alkylpyrazolo[4,3-*b*]pyridines were more polar but less active than the corresponding 1-alkyl-isomers. © 2003 Elsevier Ltd. All rights reserved.

Corticotropin releasing factor (CRF), a 41-amino acid peptide produced in hypothalamus and extracts its function by acting on the CRF receptors in the pituitary gland, is a major modulator of the body's responses to stress. Clinical evidences suggest that over-stimulation of CRF may result in several neuropsychiatric diseases including depression, anxiety and stress related disorders. Ever since the discovery of the first nonpeptide CRF₁ antagonist CP-154,526 (1) in 1996,¹ many different classes of small molecules were reported as potent CRF₁ antagonists.² In the efforts to search for smallmolecule CRF₁ receptor antagonists for treatment of anxiety/depression and other related diseases, we³ and others⁴ have synthesized a series of pyrazolo[1,5-*a*]pyrimidines. Although these derivatives possess very potent receptor binding affinity and functional antagonism, like many other classes of CRF₁ antagonists, this series of compounds such as 2a are very lipophilic and have poor water-solubility. CP-154,526 has extremely high volume of distribution in rats, resulting in a very long half-life,⁵ that may imply potential accumulation in the body and thus may cause unexpected toxicity. We have been able to optimize the pyrazolo[1,5-a]pyrimidine series by incorporating a basic aminopyridine group represented by compound **2b** (NBI 30775).⁶ We also reported recently⁷ a series of 4-aminoquinolines such as 3, which was designed and optimized based on the high basicity of this core (4-aminoquinoline has a pK_a value of 9.1).⁸ Recently, a series of pyrazolo[4,3-*d*]pyrimidines 4 and 5 was reported as potent CRF₁ antagonists with low nanomolar binding affinity.⁹ Again this series of derivatives may suffer from high lipophilicity and poor water solubility. Here, we report the synthesis and initial SAR study of a series of 3-phenylpyrazolo[4,3-*b*]pyridines as CRF₁ antagonists (Fig. 1).

The rationale for the design of this series of compounds is as follow. Since the benzene-fused 4-aminopyridine $(pK_a = 9.17)$ ¹⁰ that is 4-aminoquinoline $(pK_a = 9.1)$ ⁸ is basic than 4-aminoquinazoline much more $(pK_a = 5.73)$ ¹¹ the pyrazolo-fused 4-aminopyridine structure (pyrazolo[4,3-b]pyridine) would be more basic (estimated $pK_a \sim 7.8)^{12}$ than the corresponding ringfused pyrimidines such as pyrrolo[2,3-b]pyrimidine (1), pyrazolo[1,5-a]pyrimidine (2) and pyrazolo[4,3-d]pyrimidine (4). However, the chemistry of this bicyclic heterocycle remains unexplored due to a lack of efficient synthetic routes to the key intermediate 4-amino-3arylpyrazoles 11-13 (Schemes 1 and 2). There are few reports on the synthesis of 4-amino-3-arylpyrazoles in the literature.^{13–15} For example, a five-step synthesis is reported via the cyclization of ethyl 3-benzoyl-3-nitroso-2-oxopropionate with hydrazine or methylhydrazine, followed by saponification and decarboxylation, but the

^{*}Corresponding author. Tel.: +1-858-658-7600; fax: +1-858-658-7601; e-mail: cchen@neurocrine.com

⁰⁹⁶⁰⁻⁸⁹⁴X/03/\$ - see front matter \odot 2003 Elsevier Ltd. All rights reserved. doi:10.1016/S0960-894X(03)00621-8

Figure 1. Some bicyclic small-molecule CRF₁ antagonists.

Scheme 1. Reagents and conditions: (a) sodium phthalimide, DMF; (b) DMFDMA, reflux; (c) NH₂NH₂·HCl, aq EtOH, reflux; (d) NH₂NH₂, EtOH, reflux; (e) NH₂NH₂, EtOH, rt, 1 h, then reflux.

Scheme 2. Reagents and conditions: (a) $RNHNH_2 \cdot H_2SO_4$, aq EtOH, reflux, then, separation; (b) NH_2NH_2 , EtOH, reflux.

overall yield is low (less than 1%).⁹ Here, we report the synthesis of a series of pyrazolo[4,3-*b*]pyridines via an efficient synthesis of 4-aminopyrazoles. The initial SAR of the 1-alkyl- and 2-alkyl-pyrazolo[4,3-*b*]pyridines as CRF₁ receptor antagonists will also be discussed.

Reaction of α -phthaloylaminoacetophenone derivatives 6, obtained from α -bromo- or α -chloro-acetophenones and potassium phthalimide in DMF or ethanol,¹⁶ with *N*,*N*-dimethylformamide dimethyl acetal (DMFDMA) proceeded smoothly at reflux (with or without DMF as solvent) to give the crude enamines 7 in quantitative yields after concentration in vacuo. The enamines 7

Scheme 3. Reagents and conditions: (a) ethyl acetoacetate, benzene; (b) Ph_2O , heat; (c) $POCl_3$, reflux; (d) R^1R^2NH , heat.

could be easily purified by ether trituration to precipitate the products (Scheme 1). Reaction of 7 with 2.5 equiv of hydrazine in ethanol at room temperature for 1 h followed by refluxing the mixture for 2 h gave 4-amino-3-phenylpyrazoles 11 in 70–85% yield (two steps from 6). Similarly, cyclization of 7 with alkylhydrazine afforded 4-amino-3-arylpyrazoles 12 and 13, in good yields, as a mixture of regio-isomers.

It is worth noting that 4-aminopyrazoles 11–13 are labile compounds and they turn to dark color when exposed to air. We discovered that the use of alkylhydrazine hydrochloride or sulfate salts avoided the formation of the des-phthaloyl compounds even with a large excess of hydrazine reagent or longer reaction time. Thus, cyclization of hydrazine hydrochloride with 7 in refluxing aqueous ethanol (EtOH-H₂O 10:1) for 2-16 h gave the 3-aryl-4-phthaloylaminopyrazoles 8 in about 85% yield, which was deprotected with hydrazine in refluxing ethanol to afford the 4-amino-3-arylpyrazoles 11 (Scheme 1). A similar method was used to prepared compounds 12 and 13. Thus, cyclization of 7 with methylhydrazine sulfate gave a mixture of 9 and 10 in a ratio of about 2:1. These two regio-isomers were easily separated by chromatography on silica gel. Deprotection of the phthaloyl group of compound 9 or 10 proceeded in high yields (>90%) with two equivalents of hydrazine free base in refluxing ethanol for an hour (Scheme 2). The assignment of the two isomeric structures of 9/10, and 12/13 are based on proton NMR analyses and confirmed by NOE NMR experiments.¹⁷

We applied the aminopyrazoles 11, 12, and 13 to synthesize pyrazolo[3,4-b]pyridines 17, 18, and 19, which is outlined in Scheme 3 and illustrated as follows. 4-Amino-3-(2,4-dichlorophenyl)-1H-pyrazole (11a) was obtained from readily available $\alpha, 2', 4'$ -trichloroacetophenone in 65% yield. Compound 11a was heated for two h with ethyl acetoacetate (2 equiv), in the presence of catalytic amount of toluenesulfonic acid, in benzene with a Dean–Stark water trap to remove water. The crude enamine 14a was used directly, after concentration in vacuo, for cyclization. Thus, 14a was added into a hot phenyl ether solution at 240 °C for 10 min to give the pyrazolo[3,4-b]pyridone **15a** as a brown solid. Conversion of the pyridone 15a to the corresponding chloropyrazolo[3,4-b]pyridine **16a** was accomplished by refluxing compound 15a in POCl₃ for 2 h. The amine replacement reaction proceeded in an excess amount of

primary or secondary amine, promoted by toluenesulfonic acid at 160 °C in a sealed reacti-vial for 6 h, to give the desired pyrazolo[3,4-b]pyridine 17a. Finally, alkylation of 17 with alkyl halide in the presence of sodium hydride in DMF gave two isomers 18 and 19. which were separated by chromatography on silica gel (Scheme 4). Their isomeric structures were assigned based on proton NMR analyses as described before and confirmed by NOE NMR experiments. This synthetic route was not optimized but is very efficient for the rapid generation of 18 and 19 analogues from readily available α -chloro- or α -bromoacetophenones. Alternatively, compounds 18 and 19 were also prepared from the corresponding 1-alkyl-4-aminopyrazoles 12 and 13, respectively, according to a similar procedure described above.

The desired compounds 17, 18, and 19 were assayed on the binding affinities towards the human CRF₁ receptor stably express on HEK273 cells,¹⁸ and the results are summarized in Table 1 and Table 2. The 1*H*-pyrazolo[4,3-*b*]pyridines 17a–c showed only moderate binding affinity (K_i 26–60 nM), and they were much less active than the corresponding pyrazolo[1,5-*a*]pyrimidine analogues such as 2a. One explanation for the decrease in binding affinity could be that the polar nature of the NH functionality of 17a may be harmful to receptor

Scheme 4. Reagents and conditions: (a) RX, NaH, DMF, rt.

 Table 1. Comparison of binding affinity between 1-alkyl and 2-alkylpyrazolo[4,3-b]pyridines

Compd	R	R^1NR^2	K_{i} (nM)
17a	Н	Bu ₂ N	40
17b		c-PrCH ₂ NPr	26
17c		BuNEt	60
18a	Me	Bu_2N	0.62 ± 0.35
18b		c-PrCH ₂ NPr	1.7 ± 0.7
18c		BuNEt	2.0 ± 0.2
18d		Pr ₂ N	3.3 ± 1.5
18e	Et	Bu_2N	2.1 ± 0.2
18f		<i>c</i> -PrCH ₂ NPr	1.7 ± 0.7
18g		BuNEt	4.2 ± 0.7
18h	Pr	Bu_2N	180
18i	<i>i</i> -Pr	Bu_2N	16.1 ± 1.0
19a	Me	Bu_2N	32.5 ± 5.7
19b		<i>c</i> -PrCH ₂ NPr	11.0 ± 4.8
19c		BuNEt	35.0 ± 5.0
19d		Pr_2N	4.4 ± 2.0
19e	Et	Bu_2N	32.8 ± 4.0
19f		<i>c</i> -PrCH ₂ NPr	46
19g		BuNEt	32
19h	Pr	Bu_2N	64
19i	<i>i</i> -Pr	Bu_2N	37

Table 2. SAR of the substituents on the 3-phenyl group

$\begin{array}{c} R \\ N \\ N \\ X \end{array} \begin{array}{c} R \\ N \\ N \\ 19 \end{array}$						
Compd	R	Х	R^1NR^2	$K_{i}(nM)$		
19d 19j 19k 19l 19m 19n 19o 19p	Me Et	2,4-Cl ₂ 2,4-Cl ₂ 4-Cl H 2,4,6-Me ₃ 2-Cl-4-MeO 2-Cl-4-Me 2-Cl-4-Me	Pr ₂ N BuNCH ₂ CH ₂ PhOMe-4 Pr ₂ N Pr ₂ N Bu ₂ N Bu ₂ N c-PrCH ₂ NPr Bu ₂ N	$\begin{array}{c} 4.4 \pm 2.0 \\ 80 \\ 81.5 \pm 25.5 \\ 230 \\ 27.5 \pm 7.5 \\ 70 \\ 32.0 \pm 4.0 \\ 59 \end{array}$		

binding. The missing methyl group corresponding to the 2-position of pyrazolo[1,5-*a*]pyrimidine 2a ($K_i = 1$ nM) could also account for the 10-fold loss in activity. The 2-alkyl-pyrazolo[4,3-b]pyridines **19**, especially the 2-methyl analogue 19d which had the same geometry as 2a, were much more polar than the corresponding 1-alkyl-isomers 18 and pyrazolo[1,5-a]pyrimidine 2 on silica gel. Thus, methylation (19b) at the 2-position of **17b** ($K_i = 26$ nM) only slightly increased binding affinity, whereas ethylation (19f) hardly changed the binding (19f vs 17b). Alkylation of 17c with propyl or isopropyl group (19h and 19i) also had minimal impact on the binding affinity. The best compound from this subseries, the dipropylamino derivative **19d**, had a K_i value of 4.4 nM, which is comparable to the corresponding pyrazolo[4,3-d]pyrimidine analogue 5 ($K_i = 3$ nM), but less active than the pyrazolo[1,5-a]pyrimidine 2a ($K_i = 1.3$ nM).

The 1-alkyl pyrrazolo[4,3-b]pyridine derivatives 18, although they were less polar than their corresponding isomers **19**, were still much more polar on silica gel than the pyrazolo[1,5-*a*]pyrimidines 2 and exhibited increased binding affinity. Thus, 18b and 18c were 15and 30-fold, respectively, more active than 17b and 17c; and 18a with a K_i value of 0.62 nM was 65-fold better than 17a. The dipropylamino derivative 18d $(K_i = 1.8 \text{ nM})$ had comparable activity with the corresponding 1-methylpyrazolo[4,3-d]pyrimidine 4 ($K_i = 1$ nM) and pyrazolo[1,5-*a*]pyrimidine **2a** ($K_i = 1.3$ nM). The ethyl derivatives 18e, 18f and 18g were slightly less active (<3-fold) than the corresponding methyl analogues 18a-c. Interestingly, the bulky isopropyl compound 18i ($K_i = 16 \text{ nM}$) was only 25-fold less active than the optimal methyl analogue 18a, but the longer propyl derivative **18h** ($K_i = 180$ nM) lost almost 300-fold activity (Table 1).

The effects of the substitution on the 3-phenyl group of the 2-methylpyrazolo[4,3-*b*]pyridines **19** were also investigated and the results are summarized in Table 2. Similar to the pyrazolo[1,5-*a*]pyrimidine series, the 2,4-dichlorophenyl is the most favored group at this position. In the current series, loss of the 4-chlorine of the 2,4-dichlorophenyl group of **19d** resulted in almost 20-fold decrease in binding affinity (**19k**, K_i =81 nM).

The un-substituted phenyl analogue **191** had a K_i value of 230 nM, much less active than **19d**. The 2,4,6-trimethylphenyl derivative **19m** ($K_i = 28$ nM) was similarly active as **19a**, but the 2-chloro-4-methoxyphenyl was not able to mimic the 2,4-chlorophenyl group and the resulting compound **19n** ($K_i = 70$ nM) was 3-fold less active than **19a**. Other than 2,4,6-trimethylphenyl ring, the 2-chloro-4-methylphenyl group was a reasonably good replacement of the 2,4-dichlorophenyl ring (**19o** and **19b**, $K_i = 22$ and 11 nM, respectively).

In general, the 1-alkyl-pyrazolo[4,3-*b*]pyridines **18** were much more active than the corresponding 2-alkyl-isomers **19**, and the best compound from isomers **19** had a K_i value of 4.4 nM (**19d**) on binding to the CRF₁ receptor. The high polarity, which may contribute to the lower binding affinity, is certainly an advantage for designing CRF₁ antagonists with desirable pharmacokinetic profile and eventually in vivo efficacy.

Selective compounds from this series were further tested for functional antagonism on the CRF₁ receptor. Thus, in a CRF-stimulated c-AMP production assay, compounds **18a**, **18b**, and **18c** inhibited c-AMP accumulation with low nanomolar IC₅₀ values (15.8, 5.0, and 16 nM, respectively), while compounds **19d** was less active (IC₅₀=365 nM). All compounds were examined for activity in a CRF₂-receptor binding assay as previously described¹⁹ and none of the listed compounds showed a does-dependent inhibition of binding and none had a greater than 40% inhibition at a concentration of 10 μ M. These data demonstrate these compounds are selective CRF₁ antagonists.

In conclusion, condensation of a phthaloylaminoacetophenone derivatives **6** with *N*,*N*-dimethylformamide dimethyl acetal gave the enamines **7**, which was cyclized with hydrazine to give the pivotal intermediate 4-amino-3-arylpyrazoles **10**, **11**, and **12**. Application of this key intermediate towards the synthesis of pyrazolo[4,3*b*]pyridines **17–19** resulted in the discovery of a class of very potent and relatively more polar (most likely more basic) CRF₁ receptor antagonists. Isomers **19**, which were more polar on silica gel chromatography, were less active than the corresponding **18** subseries. Isomers **18** possessed a basic core structure (calculated pK_a value for **18d** was 10.4, ACD) and displayed excellent potency. The optimization of **18** will be reported in the following paper.

Acknowledgements

We like to thank Mr. Zhengyu Liu for technical supports of this work.

References and Notes

1. Schulz, D. W.; Mansbach, R. S.; Sprouse, J.; Braselton, J. P.; Collins, J.; Corman, M.; Dunaiskis, A.; Faraci, S.;

Schmidt, A. W.; Seeger, T.; Seymour, P.; Tingley, F. D., III; Winston, E. N.; Chen, Y. L.; Heym, J. *PNAS* **1996**, *93*, 10477. 2. For a recent review, see: Grigoriadis, D. E.; Haddach, M.; Ling, N.; Saunders, J. *Curr. Med. Chem.* **2001**, *1*, 63.

3. Wilcoxen, K.; Chen, C.; Huang, C.; Haddach, M.; Xie, M.; Wing, L.; Grigoriadis, D. E.; De Souza, E. B.; McCarthy, J. R. *Book of Abstracts*, 217th American Chemical Society National Meeting, Anaheim, CA, USA, March 21–25, 1999; MEDI 002.

4. (a) Wustrow, D. J.; Capiris, T.; Rubin, R.; Knobelsdorf, J. A.; Akunne, H.; Davis, M. D.; MacKenzie, R.; Pugsley, T. A.; Zoski, K. T.; Heffner, T. G.; Wise, L. D. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 2067. (b) Gilligan, P. J.; Baldauf, C.; Cocuzza, A.; Chidester, D.; Zaczek, R.; Fitzgerald, L. W.; McElroy, J.; Smith, M. A.; Shen, H. L.; Saye, J. A.; Christ, D.; Trainor, G.; Robertson, D. W.; Hartig, P. *Bioorg. Med. Chem.* **2000**, *8*, 181.

5. Keller, C.; Bruelisauer, A.; Lemaire, M.; Enz, A. Drug Metab. Dispos. 2002, 30, 173.

6. Chen, C.; Wilcoxen, K.; Bozigian, H.; Chen, T.; Cha, M.; McCarthy, J. R.; Huang, C. H.; Haddach, M.; Zhu, Y. F.; Murphy, B.; De Souza, E. B.; Grigoriadis, D. E. *Book of Abstracts*, 221st ACS National Meeting, San Diego, April 1–5, 2001; MEDI 214.

7. Huang, C. Q.; Haddach, M.; Chen, C.; Wilcoxen, K. M.; Xie, Y.; Grigoriadis, D. E.; McCarthy, J. R. *Book of Abstracts*, 215th American Chemical Society National Meeting, March 15, 1999, Anaheim, CA, USA. MEDI 002.

8. (a) Brown, H. C. In *Determination of Organic Structure by Physical Methods*; Braude, E. A., Nachod, F. C., Eds; Academic: New York, 1955. (b) Hawley, S. R.; Bray, P. G.; O'Neill, P. M.; Park, B. K.; Ward, S. A. *Biochem. Pharmacol.* **1996**, *52*, 723.

9. Yuan, J.; Gulianello, M.; De Lombaert, S.; Brodbeck, R.; Kieltyka, A.; Hodgetts, K. J. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 2133.

10. Angyal, S. J.; Angyal, C. L. J. Chem. Soc 1952, 1461.

11. Albert, A.; Goldacne, R.; Philips, J. J. Chem. Soc. 1948, 2240.

12. The calculated pK_a value obtained from ACD/Labs 6.00 software, 2002, Advanced Chemistry Development, Inc. The calculated pK_a values were 9.26 for 4-aminopyridine and 9.0 for 4-aminopyridine, respectively.

13. Tarzia, G.; Panzone, G.; Depaoli, A.; Schiati, P.; Selva, D. *Farmaco Ed. Sci.* **1984**, *39*, 618.

14. (a) Kishimoto, S.; Noguchi, S.; Masuda, K. *Chem. Pharm. Bull.* **1976**, *24*, 3001. (b) Lynch, H. *Can. J. Chem.* **1964**, *42*, 1605. (c) Guarneri, M.; Ferroni, R.; Fiorini, F. *Gazz. Chim. Ital.* **1968**, *98*, 569.

15. Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C. *J. Med. Chem.* **1997**, *40*, 1347.

16. (a) Sheehan, J. C.; Bolhofer, W. A. J. Am. Chem. Soc. **1950**, 72, 2786. (b) Gabriel, S. Chem. Ber. **1908**, 41, 1132.

17. Chen, C.; Wilcoxen, K.; McCarthy, J. R. Tetrahedron Lett. 1998, 39, 8229.

18. Chen, C.; Dagnino, R., Jr.; De Souza, E. B.; Grigoriadis, D. E.; Huang, C. Q.; Kim, K. I.; Liu, Z.; Moran, T.; Webb, T. R.; Whitten, J. P.; Xie, Y. F.; McCarthy, J. R. *J. Med.*

Chem. 1996, 39, 4358. 19. For a CRF_2 binding assay see: Grigoriadis, D. E.; Liu, X. J.; Vaughn, J.; Palmer, S. F.; True, C. D.; Vale, W. W.;

Ling, N.; De Souza, E. B. Mol. Pharmacol. 1996, 50, 679.