Synthesis of hyaluronic acid-related di-, tri-, and tetra-saccharides having an *N*-acetylglucosamine residue at the reducing end *

Ted M. Slaghek ^{a,b,†}, Yoshiaki Nakahara ^b, Tomoya Ogawa ^{b,c}, Johannis P. Kamerling ^a and Johannes F.G. Vliegenthart ^a

^a Bijvoet Center, Department of Bio-Organic Chemistry, Utrecht University, P.O. Box 80.075, NL-3508 TB Utrecht (Netherlands)

^b The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Hirosawa 2-1, Saitama, 351-01 (Japan)

^c Faculty of Agriculture, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113 (Japan)

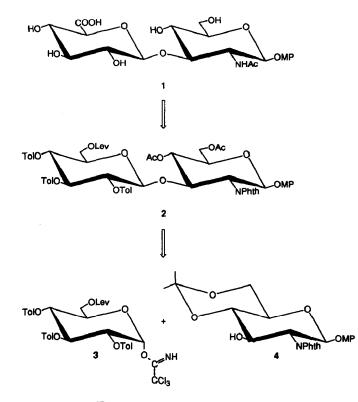
(Received March 26th, 1993; accepted August 10th, 1993)

ABSTRACT

The synthesis is reported of 4-methoxyphenyl $O-(\beta-D-glucopyranosyluronic acid)-(1 \rightarrow 3)-2$ acetamido-2-deoxy- β -D-glucopyranoside (1), 4-methoxyphenyl O-(2-acetamido-2-deoxy- β -D-glucopyranosyl-(1 \rightarrow 4)-O-(β -D-glucopyranosyluronic acid)-(1 \rightarrow 3)-2-acetamido-2-deoxy- β -D-glucopyranoside (5), and 4-methoxyphenyl $O(\beta - D - glucopyranosyluronic acid) - (1 \rightarrow 3) - O(2 - acetamido - 2 - deoxy - \beta - D - deoxy - deoxy - \beta - D - deoxy - deox$ glucopyranosyl)- $(1 \rightarrow 4)$ -O- $(\beta$ -D-glucopyranosyluronic acid)- $(1 \rightarrow 3)$ -2-acetamido-2-deoxy- β -Dglucopyranoside (10), which are structural elements of the extracellular polysaccharide hyaluronic acid. 6-O-Levulinoyl-2,3,4-tri-O-p-toluoyl- α -D-glucopyranosyl trichloroacetimidate (3) was condensed with 4-methoxyphenyl 2-deoxy-4,6-O-isopropylidene-2-phthalimido- β -D-glucopyranoside (4). De-isopropylidenation and acetylation of the obtained disaccharide derivative yielded 4-methoxyphenyl O-(6-Olevulinoyl-2,3,4-tri-O-p-toluoyl- β -D-glucopyranosyl)-(1 \rightarrow 3)-4,6-di-O-acetyl-2-deoxy-2-phthalimido- β -Dglucopyranoside, and subsequent delevulinoylation, oxidation, complete deprotection, and N-acetylation gave 1. Coupling of 4-O-allyloxycarbonyl-6-O-levulinoyl-2,3-di-O-p-toluoyl- α -D-glucopyranosyl trichloroacetimidate with 4 followed by de-isopropylidenation, acetylation, and deallyloxycarbonylation of the obtained disaccharide derivative gave 8. Condensation of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-B-D-glucopyranosyl trichloroacetimidate with 8 afforded trisaccharide derivative 4-methoxyphenyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)-(1 \rightarrow 4)-O-(6-O-levulinoyl-2, 3-di-O-p-toluoyl- β -D-glucopyranosyl)-(1 \rightarrow 3)-4,6-di-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranoside, and subsequent delevulinovlation, oxidation, complete deprotection, and N-acetvlation gave 5. 3-O-Allyloxycarbonyl-2-deoxy-4,6-O-isopropylidene-2-phthalimido-B-D-glucopyranosyl trichloroacetimidate was coupled with disaccharide acceptor 8, and deallyloxycarbonylation of the obtained trisaccharide derivative yielded 12. Condensation of 3 with 12 followed by de-isopropylidenation and acetylation of the obtained tetrasaccharide derivative gave 4-methoxyphenyl O-(6-O-levulinoyl-2,3,4-tri-O-ptoluoyl- β -D-glucopyranosyl)-(1 \rightarrow 3)-O-(4,6-di-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)-(1 \rightarrow

^{*} Part 2 of the series, "Synthesis of Oligosaccharides Related to Hyaluronic Acid". For part 1 see ref 1.

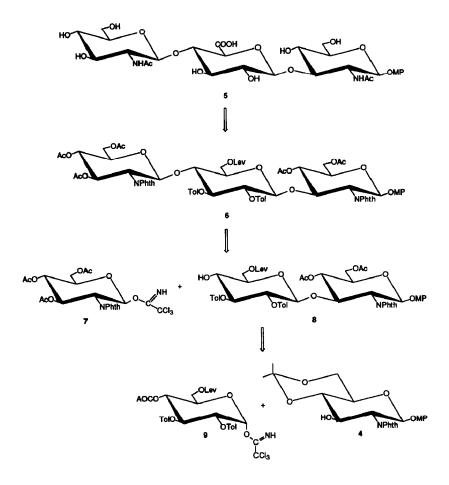
[†] Corresponding author.


INTRODUCTION

Hyaluronic acid² (HA) is a linear extracellular carbohydrate polymer consisting of disaccharide repeating units of 2-acetamido-2-deoxy-D-glucose and D-glucuronic acid, namely³, [4)- β -D-Glc pA-(1 \rightarrow 3)- β -D-Glc pNAc-(1 \rightarrow]_n. HA is synthesised by a membrane-bound hyaluronic acid synthetase at the inner side of plasma membranes, and is then extruded to the cell surface⁴. It plays an important role in cell migration⁵, the repair of fetal wounds^{6,7}, and the regulation of cell locomotion⁸. The interaction of HA with the cell surface is organised via a receptor glycoprotein, which has a receptor binding site that coordinates at least a hexasaccharide fragment of HA⁹. A high concentration of HA inhibits vascularisation¹⁰, while medium-sized oligosaccharide fragments of HA, generated by digestion with, for example, testicular hyaluronidase or *Streptomyces* hyaluronidase, stimulate the formation of new capillary blood vessels¹¹. Therefore it appears that HA is an important angiogenic factor^{11,12}.

The finding of the stimulating effect of enzymically generated HA oligosaccharides of the type [4)- β -D-GlcpA- $(1 \rightarrow 3)$ - β -D-GlcpNAc- $(1 \rightarrow]_{3-10}$ on capillary blood vessel formation led to the initiation of a synthetic program focused on the preparation of a wide range of medium-sized oligosaccharide fragments with 2-acetamido-2-deoxy-D-glucose or D-glucuronic acid units at the reducing position. This series of carbohydrates, being more diverse than the enzymically prepared series, will make it possible to study this highly interesting biological phenomenon in more detail. The present report describes the stereoselective synthesis of a di-(1), tri- (5), and tetra-saccharide (10) fragment having a 4-methoxyphenyl 2acetamido-2-deoxy-D-glucopyranose residue at the reducing end.

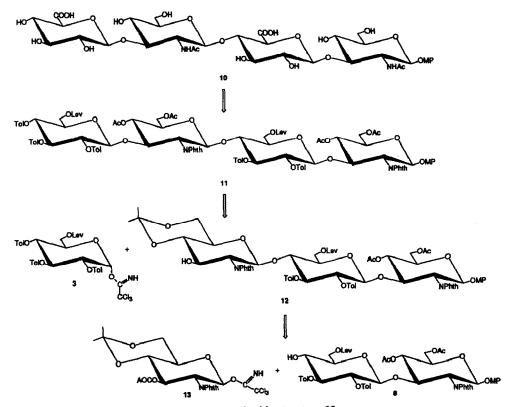
RESULTS AND DISCUSSION


For the syntheses of the three oligosaccharides 1, 5, and 10 a series of suitable coupling synthons, namely 3, 4, 7, 9, and 13, were designed, which in principle would serve for extension to higher oligosaccharides. 6-O-Levulinoyl-2,3,4-tri-O-ptoluoyl- α -D-glucopyranosyl trichloroacetimidate (3) and 4-O-allyloxycarbonyl-6-Olevulinoyl-2,3-di-O-p-toluoyl- α -D-glucopyranosyl trichloroacetimidate (9) are precursors for the D-glucuronic acid element in nonreducing terminal and internal positions, respectively, whereas 4-methoxyphenyl 2-deoxy-4,6-O-isopropylidene-2phthalimido- β -D-glucopyranoside (4), 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl trichloroacetimidate (7), and 3-O-allyloxycarbonyl-2-deoxy-4,6-

Lev = Levulinoy!; MP = 4-methoxyphenyl; Tol = p-toluoyl; Phth = phthaloyl Scheme 1. Retrosynthetic analysis of disaccharide structure 1.

O-isopropylidene-2-phthalimido- β -D-glucopyranosyl trichloroacetimidate (13) are the precursors for the 2-acetamido-2-deoxy-D-glucose element in glycosidic, nonreducing terminal, and internal positions, respectively. Of the 5 synthons, only monosaccharide derivative 7 has been synthesised before¹³. The preparation of the remaining 4 compounds will be presented first.

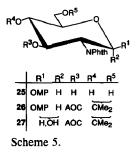
1,2,3,4,6-Penta-O-acetyl- β -D-glucopyranose (14) was glycosylated with 4-methoxyphenol in dichloromethane, using trimethylsilyl trifluoromethanesulfonate as a promoter (\rightarrow 15, 95%). Then conventional saponification (\rightarrow 16) and 4,6-O-benzylidenation with benzaldehyde dimethyl acetal in the presence of *p*-toluenesulfonic acid gave 17 (88%). The HO-2 and -3 groups of 17 were *p*-toluoylated with *p*-toluoyl chloride in pyridine (\rightarrow 18, 99%), and after acid hydrolysis of the benzylidene group (\rightarrow 19, 88%), the primary hydroxyl group was selectively protected using levulinic acid in the presence of 2-chloro-1-methylpyridinium iodide and 1,4-diazabicyclo[2.2.2]octane^{14,15} (\rightarrow 20, 96%). *p*-Toluoylation of HO-4 of 20 (\rightarrow 21, 90%), followed by removal of the 4-methoxyphenyl group with ammonium cerium(IV)nitrate¹⁶ (\rightarrow 22, 88%) and subsequent imidation with trichloroacetonitrile in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene¹⁷ gave 3 (89%). On the



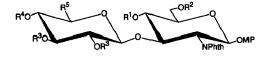
AOC = allyloxycarbonyl Scheme 2. Retrosynthetic analysis of trisaccharide structure 5.

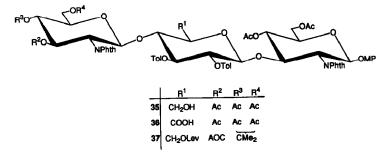
other hand, allyloxycarbonylation of HO-4 of **20** with allyl chloroformate in 1:1 pyridine-dichloromethane at $-35^{\circ}C^{18}$ afforded **23** (71%), which, after removal of the 4-methoxyphenyl group with ammonium cerium(IV) nitrate (\rightarrow 24, 88%), was converted into the trichloroacetimidate 9 (81%) using trichloroacetonitrile in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene.

4-Methoxyphenyl 2-deoxy-2-phthalimido- β -D-glucopyranoside¹⁹ (25) was 4,6-Oisopropylidenated with 2,2-dimethoxypropane in N,N-dimethylformamide using a catalytic amount of p-toluenesulfonic acid to give 4 (86%). Allyloxycarbonylation of HO-3 of 4 with allyl chloroformate in 1:1 pyridine-dichloromethane at -35° C (\rightarrow 26, 96%), followed by removal of the 4-methoxyphenyl group with ammonium cerium(IV) nitrate (\rightarrow 27, 76%), and subsequent imidation as described above yielded 13 (92%).


As a first step in the synthesis of disaccharide 4-methoxyphenyl glycoside 1, the

Scheme 3. Retrosynthetic analysis of tetrasaccharide structure 10.



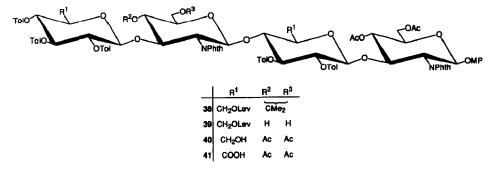

condensation of 3 and 4 in dichloromethane at 0°C, using trimethylsilyl trifluoromethanesulfonate as a promoter, afforded disaccharide derivative 28 (81%). Then de-isopropylidenation of 28 with aqueous trifluoroacetic acid in dichloromethane $(\rightarrow 29, 84\%)$, subsequent conventional acetylation $(\rightarrow 2, 97\%)$, and delevulinoylation using hydrazine acetate in 1:2 toluene-ethanol^{20,21} gave 30 (98%). The oxidation of the primary hydroxyl group of the glucose unit in 30 was conducted in two stages, namely first a Swern oxidation with oxalyl chloride and dimethyl sulfoxide²², then a treatment with sodium chlorite²³, giving 31 in 70% yield. To obtain 1, 31 was treated with methylamine²⁴ in ethanol followed by selective *N*-acetylation using acetic anhydride in methanol. However, because ¹H NMR showed the presence of an *O*-acetyl group, an additional treatment with sodium methoxide in methanol was necessary to yield 1 (65%).

The synthesis of trisaccharide 4-methoxyphenyl glycoside 5 was carried out as follows. Condensation of glycosyl imidate 9 with acceptor 4 in dichloromethane at 0°C, using trimethylsilyl trifluoromethanesulfonate as a promoter, gave disaccharide derivative 32 (87%). Then de-isopropylidenation of 32 using aqueous trifluoroacetic acid in dichloromethane (\rightarrow 33, 88%), subsequent conventional acetylation (\rightarrow 34, 98%), and de-allyloxycarbonylation with tetrakis(triphenylphosphine) palladium^{25,26} in tetrahydrofuran and morpholine gave disaccharide acceptor 8

	81	R²	R ³	R ⁴	R⁵
28	CMe ₂ Tol H H Tol Ac Ac Tol Ac Ac Tol CMe ₂ Tol H H Tol Ac Ac Tol			Tol	CH ₂ OLev
29	н	н	Tol	Tol	CH ₂ OLev
30	Ac	Ac	Toi	Tol	CH ₂ OH
31	Ac	Ac	Tol	Tol	соон
32	CMe2 Tol		AOC	CH ₂ OLev	
33	н	н	Toi	AOC	CH ₂ OLev
34	Ac	Ac	Tol	AOC	CH ₂ OLev

Scheme 6.

Scheme 7.


(95%). Condensation of 8 with glycosyl imidate 7 in dichloromethane at 25°C, using boron trifluoride etherate as a promoter, gave trisaccharide derivative 6 (81%). After removal of the levulinoyl group with hydrazine acetate in 1:2 toluene-ethanol (\rightarrow 35, 88%), a Swern oxidation with oxalyl chloride and dimethyl sulfoxide followed by an oxidation with sodium chlorite afforded 36 (95%). Finally, 36 was deacylated with methylamine in methanol, followed by selective N-acetylation with acetic anhydride in methanol to give 5 (79%).

For the synthesis of tetrasaccharide 4-methoxyphenyl glycoside 10 disaccharide acceptor 8 was condensed with donor 13 in dichloromethane at 25°C, using boron trifluoride etherate as a promoter, to give trisaccharide derivative 37 (88%). After removal of the allyloxycarbonyl group with tetrakis(triphenylphosphine)palladium in tetrahydrofuran and morpholine (\rightarrow 12, 95%), the product was condensed with glucose donor 3 in dichloromethane at 0°C, using trimethylsilyl trifluoromethanesulfonate, to give tetrasaccharide 38 (87%). Then de-isopropylidenation of 38 with aqueous trifluoroacetic acid in dichloromethane (\rightarrow 39, 85%), followed by conventional acetylation (\rightarrow 11, 96%), and de-levulinoylation with hydrazine acetate in 1:2 toluene-ethanol, gave 40 (76%). Subsequent Swern oxidation with oxalyl chloride and dimethyl sulfoxide in dichloromethane followed by an oxidation with sodium chlorite afforded 41 (86%). Finally, 41 was deacylated with methylamine in methanol, followed by selective N-acetylation with acetic anhydride in methanol, to afford 10 (82%).

The three synthesised oligosaccharides will be tested in biological systems.

EXPERIMENTAL

General methods.—The ¹H (300 and 500 MHz) and ¹³C (75 and 100 MHz), including APT (attached proton test) experiments NMR spectra were recorded at 25°C with a GNM-GSX-500, a JEOL GX-400, a Bruker AC 300 or a Bruker AC 500 spectrometer, for solutions in CDCl₃ unless stated otherwise. Chemical shifts (δ) are given in ppm relative to the signal for internal Me₄Si (CDCl₃) or sodium 4,4-dimethyl-4-silapentane-1-sulfonate (D₂O, measured from internal acetone at δ

Scheme 8.

2.225) for ¹H, and relative to the signal for internal Me₄Si (CDCl₃, measured from CDCl₃ at δ 76.9) or external Me₄Si (D₂O, measured from internal acetone at δ 31.55) for ¹³C. Column chromatography was performed on Kieselgel 60 (Merck, 230-400 mesh), and fractions were monitored by TLC on Kieselgel 60 F₂₅₄ (Merck) by detection with UV light and then charring with H₂SO₄. Optical rotations were measured on solutions in CH₂Cl₂, unless stated otherwise, at 20°C with a Perkin-Elmer 241 polarimeter, using a 10-cm, 1-mL cell. Melting points were determined with a Mettler FP-51 instrument. Solvents were evaporated under reduced pressure at 40°C (bath). All solvents were distilled from the appropriate drying agents.

4-Methoxyphenyl 2,3,4,6-tetra-O-acetyl- β -D-glucopyranoside (15).—To a solution of 1,2,3,4,6-penta-O-acetyl- β -D-glucopyranose (14; 50.0 g, 128.2 mmol) and 4methoxyphenol (24.0 g) in 1,2-dichloroethane (400 mL) was added CF₃SO₃SiMe₃ (2.5 mL) at 0°C. The mixture was stirred for 4.5 h, diluted with EtOAc (600 mL), washed with aq satd NaHCO₃ (2 × 200 mL) and water (2 × 200 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. Crystallisation from 2-propanol and purification of the mother liquor by column chromatography (2:1 toluene-EtOAc) yielded 15 (55.3 g, 95%); $[\alpha]_D - 21^\circ$ (c 1); R_f 0.66; mp 102°C. ¹H NMR data: δ 2.032, 2.041, 2.076, and 2.083 (4 s, 12 H, 4 Ac), 3.775 (s, 3 H, C₆H₄OCH₃), 4.168 (dd, 1 H, J_{6a,5} 2.2, J_{6a,6b} - 12.1 Hz, H-6a), 4.288 (dd, 1 H, J_{6b,5} 5.1 Hz, H-6b), 4.953 (d, 1 H, J_{1,2} 7.3 Hz, H - 1), 6.817 and 6.946 (2 d, 4 H, C₆H₄OCH₃). Anal. Calcd for C₂₁H₂₆O₁₁: C, 55.50; H, 5.77. Found: C, 55.48; H, 5.76.

4-Methoxyphenyl 4,6-O-benzylidene- β -D-glucopyranoside (17).—To a solution of 15 (5.07 g, 11.16 mmol) in MeOH (50 mL) was added 0.1 M methanolic NaOMe (5.0 mL), and the mixture was stirred overnight, when TLC (10:2:1 EtOAc-EtOH-H₂O) showed the deacetylation to be complete (16; R_f 0.71). Then Amberlyst-15 resin was added to neutralise the mixture and it was filtered and concentrated to give crude 16. The residue was dissolved in DMF (56 mL), and benzaldehyde dimethyl acetal (2.6 mL) and p-TsOH were added. The mixture was stirred overnight, when TLC (5:1 CH₂Cl₂-acetone) showed the benzylidenation to be complete (17; R_f 0.65). Amberlyst-21 resin was added to neutralise the acid, and the mixture was filtered and concentrated. Column chromatography (5:1 CH_2Cl_2 -acetone) of the residue gave 17, isolated as a syrup (3.69 g, 88%); $[\alpha]_D$ – 48° (c 1, MeOH). ¹H NMR data: δ 3.791 (s, 3 H, C₆H₄OCH₃), 4.903 (d, 1 H, $J_{1,2}$ 7.7 Hz, H-1), 5.587 (s, 1 H, C₆H₅CH), 6.851 and 7.049 (2 d, 4 H, C₆H₄OCH₃), 7.36–7.37 and 7.48–7.52 (2 m, 5 H, C₆H₅CH). Anal. Calcd for C₂₀H₂₂O₇: C, 64.16; H, 5.92. Found: C, 63.98; H, 5.89.

4-Methoxyphenyl 4,6-O-benzylidene-2,3-di-O-p-toluoyl-β-D-glucopyranoside (18). —To a solution of 17 (3.18 g, 8.49 mmol) in pyridine (40 mL) was added p-toluoyl chloride (3.5 mL) and 4-dimethylaminopyridine (5 mg). When TLC (95:5 CH₂Cl₂-EtOAc) showed the reaction to be complete (18; R_f 0.89), the mixture was diluted with EtOAc (100 mL) and washed with aq satd NaHCO₃ (20 mL) and water (20 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (3:2 hexane-EtOAc) of the residue yielded 18, isolated as a syrup (5.16 g, 99%); $[\alpha]_D$ +65° (c 1). ¹H NMR data: δ 2.344 and 2.351 (2 s, 6 H, 2 COC₆H₄CH₃), 3.736 (s, 3 H, C₆H₄OCH₃), 3.774 (m, 1 H, H-5), 5.232 (d, 1 H, J_{1,2} 7.7 Hz, H-1), 5.562 (s, 1 H, C₆H₅CH), 5.684 (dd, 1 H, J_{2,3} 9.5 Hz, H-2), 5.812 (t, 1 H, J_{3,4} 9.5 Hz, H-3), 6.768 and 6.920 (2 d, 4 H, C₆H₄OCH₃), 7.163 (4 H), 7.858, and 7.874 (3 d, 8 H, 2 COC₆H₄CH₃), and 7.31-7.41 (m, 5 H, C₆H₅CH). Anal. Calcd for C₃₆H₃₄O₉: C, 70.80; H, 5.61. Found: C, 70.15; H, 5.57.

4-Methoxyphenyl 2,3-di-O-p-toluoyl-β-D-glucopyranoside (19).—A solution of 18 (6.02 g, 9.86 mmol) in acetic acid (39.2 mL) and water (9.8 mL) was stirred at 80°C until TLC (4:1 CH₂Cl₂-acetone) showed the conversion of 18 into 19 (R_f 0.76). Then the solution was concentrated, and toluene, EtOH, and CH₂Cl₂ (each 3×100 mL) were evaporated from the residue. Column chromatography (4:1 CH₂Cl₂-acetone) of the residue gave 19, isolated as a syrup (4.54 g, 88%); [α]_D + 132° (c 1). ¹H NMR data: δ 2.352 and 2.361 (2 s, 6 H, 2 COC₆H₄CH₃), 3.742 (s, 3 H, C₆H₄OCH₃), 5.180 (d, 1 H, J_{1,2} 8.1 Hz, H-1), 5.418 and 5.639 (2 t, 2 H, H-2,3), 6.771 and 6.909 (2 d, 4 H, C₆H₄OCH₃), 7.164, 7.179, 7.856, and 7.871 (4 d, 8 H, 2 COC₆H₄CH₃). Anal. Calcd for C₂₉H₃₀O₉: C, 66.65; H, 5.79. Found: C, 66.55; H, 5.82.

4-Methoxyphenyl 6-O-levulinoyl-2,3-di-O-p-toluoyl- β -D-glucopyranoside (20).—To a solution of 19 (16.10 g, 30.82 mmol) in 1,2-dichloroethane (500 mL) was added levulinic acid (6.31 mL) and 2-chloro-1-methylpyridinium iodide (20.3 g). The mixture was stirred for 15 min, then, 1,4-diazabicyclo[2.2.2]octane (13.36 g) was added, and the stirring was continued for another 20 min, when TLC (6:1 CH₂Cl₂-acetone) revealed the levulinoylation to be complete (20; R_f 0.86). Then the mixture was filtered through Celite, diluted with EtOAc (400 mL), and washed with aq 5% NaCl (2 × 200 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (95:5 CH₂Cl₂-acetone) of the residue gave 20, isolated as a syrup (18.46 g, 96%); $[\alpha]_D + 76^\circ$ (c 1). NMR data: ¹H, δ 2.187 (s, 3 H, COCH₂CH₂COCH₃), 2.353 and 2.364 (2 s, 6 H, 2 COC₆H₄CH₃), 2.64-2.78 (m, 4 H, COCH₂CH₂COCH₃), 3.514 (d, 1 H, J_{OH4} 4.4 Hz, OH), 3.744 (s, 3 H, C₆H₄OCH₃), 3.787 (m, 1 H, H-5), 3.962 (dt, 1 H, J_{4,3} = J_{4,5} = 9.5 Hz, H-4), 4.457 (dd, 1 H, $J_{6a,5}$ 2.2, $J_{6a,6b}$ – 12.1 Hz, H-6a), 4.545 (dd, 1 H, $J_{6b,5}$ 5.1 Hz, H-6b), 5.121 (d, 1 H, $J_{1,2}$ 8.1 Hz, H-1), 5.43 (t, 1 H, $J_{3,2}$ 9.2 Hz, H-3), 5.640 (dd, 1 H, H-2), 6.768 and 6.930 (2 d, 4 H, $C_6H_4OCH_3$), 7.165, 7.180, 7.857, and 7.883 (4 d, 8 H, 2 $COC_6H_4CH_3$); ¹³C, δ 21.5 ($COC_6H_4CH_3$), 28.0, 29.6, and 37.9 ($COCH_2CH_2COCH_3$), 55.5 ($C_6H_4OCH_3$), 63.3 (C-6), 100.7 (C-1), 114.5 (2 C), 118.8 (2 C), 151.3, and 155.7 ($C_6H_4OCH_3$), 165.3 and 166.9 (2 $COC_6H_4CH_3$), 172.8 ($COCH_2CH_2COCH_3$), and 206.6 ($COCH_2CH_2COCH_3$). Anal. Calcd for $C_{34}H_{36}O_{11}$: C, 65.79; H, 5.85. Found: C, 65.36; H, 5.82.

4-Methoxyphenyl6-O-levulinoyl-2,3,4-tri-O-p-toluoyl- β -D-glucopyranoside (21). To a solution of 20 (5.13 g, 8.26 mmol) in pyridine (41 mL) was added p-toluoyl chloride (1.64 mL). The solution was stirred overnight, when TLC (9:1 CH₂Cl₂acetone) showed the formation of 21 (R_f 0.92). Then EtOAc (200 mL) was added, the mixture was washed with aq satd NaHCO₃ (50 mL) and water (50 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (98:2 CH₂Cl₂-acetone) of the residue yielded 21, isolated as a syrup (5.47 g, 90%); $[\alpha]_{\rm D}$ + 22° (c 1). NMR data: ¹H, δ 2.160 (s, 3 H, COCH₂CH₂COCH₃), 2.289 and 2.348 (6 H) (2 s, 9 H, 3 COC₆H₄CH₃), 2.676 (m, 4 H, COCH₂CH₂CO-CH₃), 3.744 (s, 3 H, C₆H₄OCH₃), 4.102 (m, 1 H, H-5), 5.231 (d, 1 H, J_{1,2} 7.7 Hz, H-1), 5.578 and 5.894 (2 t, 2 H, H-3,4), 5.704 (dd, 1 H, J_{2.3} 9.5 Hz, H-2), 6.779 and 6.961 (2 d, 4 H, C₆H₄OCH₃), 7.080, 7.162 (4 H), 7.740, 7.809, and 7.853 (5 d, 12 H, 3 COC₆ H_4 CH₃); ¹³C, δ 21.2 (COC₆ H_4 CH₃), 27.5, 29.3, and 37.5 (COCH₂CH₂-COCH₃), 55.2 (C₆H₄OCH₃), 63.0 (C-6), 100.5 (C-1), 114.2 (2 C), 118.5 (2 C), 150.8, and 155.4 (C₆H₄OCH₃), 164.8, 164.9, and 165.4 (3 COC₆H₄CH₃), 171.8 (COCH₂-CH₂COCH₃), and 205.8 (COCH₂CH₂COCH₃). Anal. Calcd for C₄₂H₄₂O₁₂: C, 68.28; H, 5.73. Found: C, 68.35; H, 5.82.

6-O-Levulinoyl-2,3,4-tri-O-p-toluoyl-α/β-D-glucopyranose (22).—To a solution of 21 (5.47 g, 7.40 mmol) in 1:1:1 toluene–MeCN-water (600 mL) was added while stirring ammonium cerium(IV) nitrate (40.7 g). After 30 min TLC (9:1 CH₂Cl₂-acetone) showed the conversion of 21 into 22 (R_f 0.19). Then the mixture was diluted with EtOAc (500 mL) and washed with aq satd NaHCO₃ (50 mL) and water (100 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (9:1 CH₂Cl₂-acetone) of the residue yielded 22, isolated as a syrup (4.11 g, 88%); [α]_D + 24° (c 1) (α : β 2.7:1). ¹H NMR data: δ 2.170 (s, 3 H, COCH₂CH₂COCH₃), 2.266, 2.325, and 2.334 (3 s, 9 H, 3 COC₆H₄-CH₃), 2.658 (m, 4 H, COCH₂CH₂COCH₃), 4.664 (d, 0.27 H, $J_{1,2}$ 8.1 Hz, H-1 β), and 5.733 (d, 0.73 H, $J_{1,2}$ 3.3 Hz, H-1 α). Anal. Calcd for C₃₅H₃₅O₁₁: C, 66.44; H, 5.74. Found: C, 66.16; H, 5.82.

6-O-Levulinoyl-2,3,4-tri-O-p-toluoyl-α-D-glucopyranosyl trichloroacetimidate (3). — To a solution of 22 (2.45 g, 3.88 mmol) in CH₂Cl₂ (11.1 mL) and trichloroacetonitrile (4.1 mL) was added 1,8-diazabicyclo[5.4.0]undec-7-ene (140 μ L). The mixture was stirred overnight and purified by column chromatography (95:5 CH₂Cl₂-acetone) to yield 3, isolated as a syrup (2.70 g, 89%); R_f 0.58; $[\alpha]_D$ + 38° (c 1). ¹H NMR data: δ 2.179 (s, 3 H, COCH₂CH₂COCH₃), 2.292, 2.341, and 2.356 (3 s, 9 H, 3 $COC_6H_4CH_3$), 2.61–2.74 (m, 4 H, $COCH_2CH_2COCH_3$), 5.545 (dd, 1 H, $J_{2,1}$ 3.7, $J_{2,3}$ 10.3 Hz, H-2), 5.662 and 6.200 (2 t, 2 H, H-3,4), 6.795 (d, 1 H, H-1), 7.086, 7.147, 7.168, 7.748, and 7.832 (4 H) (5 d, 12 H, 3 $COC_6H_4CH_3$), and 8.631 (s, 1 H, NH). Anal. Calcd for $C_{37}H_{36}Cl_3NO_{11}$: C, 57.18; H, 4.67. Found: C, 56.76; H, 4.68.

4-Methoxyphenyl 4-O-allyloxycarbonyl-6-O-levulinoyl-2,3-di-O-p-toluoyl-B-D-glucopyranoside (23)—To a solution of 20 (7.71 g, 12.42 mmol) in 1:1 CH₂Cl₂-pyridine (140 mL) at -35° C was added allyl chloroformate (3 \times 2 mL, at intervals of 10 min). When TLC (85:15 toluene-acetone) showed the conversion of 20 into 23 $(R_f 0.41)$, the mixture was diluted with EtOAc (200 mL) and washed with aq satd NaHCO₃ (50 mL) and water (50 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (98:2 CH₂Cl₂-acetone) of the residue yielded 23, isolated as a syrup (6.23 g, 71%); $[\alpha]_D + 65^\circ$ (c 1). NMR data: ¹H, δ 2.192 (s, 3 H, COCH₂CH₂COCH₃), 2.354 and 2.358 (2 s, 6 H, 2 COC₆H₄CH₃), 2.61-2.81 (m, 4 H, COCH₂CH₂COCH₃), 3.739 (s, 3 H, $C_6H_4OCH_3$), 4.342 (dd, 1 H, $J_{6a,5}$ 2.6, $J_{6a,6b}$ – 13.2 Hz, H-6a), 4.395 (dd, 1 H, $J_{6b,5}$ 5.1 Hz, H-6b), 5.164 (d, 1 H, J_{1.2} 7.7 Hz, H-1), 5.638 (dd, 1 H, J_{2.3} 9.6 Hz, H-2), 6.763 and 6.925 (2 d, 4 H, C₆H₄OCH₃), 7.165 (4 H), 7.835, and 7.851 (3 d, 8 H, 2 COC₆H₄CH₃); ¹³C, δ 21.6 (COC₆H₄CH₃), 27.9, 29.7, and 37.9 (COCH₂CH₂CO-CH₃), 55.6 (C₆H₄OCH₃), 62.4 (C-6), 100.9 (C-1), 114.5 (2 C), 119.0 (2 C), 151.0, and 155.9 (C₆H₄OCH₃), 119.0 (COOCH₂CH=CH₂), 131.0 (COOCH₂CH=CH₂), 153.8 (COOCH2CH=CH2), 165.1 and 165.6 (2 COC6H4CH3), 172.2 (COCH2-CH₂COCH₃), and 206.1 (COCH₂CH₂COCH₃). Anal. Calcd for C₃₈H₄₀O₁₃: C, 64.76; H, 5.72. Found: C, 64.92; H, 5.77.

4-O-Allyloxycarbonyl-6-O-levulinoyl-2,3-di-O-p-toluoyl- α/β -D-glucopyranose (24). — To a suspension of 23 (6.23 g, 8.84 mmol) in 3:4:3 toluene–MeCN–water (500 mL) was added ammonium cerium(IV) nitrate (48.6 g). After stirring for 40 min TLC (95:5 CH₂Cl₂–acetone) showed the conversion of 23 into 24 (R_f 0.17). Then the mixture was diluted with EtOAc (300 mL) and washed with aq satd NaHCO₃ (50 mL) and water (100 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (9:1 CH₂Cl₂–acetone) of the residue gave 24, isolated as a syrup (4.22 g, 88%); $[\alpha]_D + 101^\circ$ (c 1) (α : β 2.3:1). ¹³C NMR data: δ 21.6 (COC₆H₄CH₃), 28.0, 29.7, and 38.0 (COCH₂CH₂COCH₃), 62.4 (C-6), 90.4 (C-1 α), 95.8 (C-1 β), 118.8 (COOCH₂CH=CH₂), 131.0 (COOCH₂CH=CH₂), 154.0 (COOCH₂CH=CH₂), 172.4 (COCH₂CH₂COCH₃), and 207.0 (CO-CH₂CH₂COCH₃). Anal. Calcd for C₃₁H₃₄O₁₂: C, 62.20; H, 5.73. Found: C, 62.20; H, 5.78.

4-O-Allyloxycarbonyl-6-O-levulinoyl-2, 3-di-O-p-toluoyl- α -D-glucopyranosyl trichloroacetimidate (9).—To a solution of 24 (3.41 g, 6.26 mmol) in CH₂Cl₂ (18 mL) was added trichloroacetonitrile (6.7 mL) and 1,8-diazabicyclo[5.4.0]undec-7-ene (240 μ L). The mixture was stirred overnight and purified by column chromatography (93:7 CH₂Cl₂-acetone) to yield 9, isolated as a syrup (3.78 g, 81%); R_f 0.88; $[\alpha]_D + 105^\circ$ (c 1). NMR data: ¹H, δ 2.170 (s, 3 H, COCH₂CH₂COCH₃), 2.345 and 2.360 (2 s, 6 H, 2 $COC_6H_4CH_3$), 2.66–2.79 (m, 4 H, $COCH_2CH_2COCH_3$), 5.057 and 5.171 (2 m, 2 H, $COOCH_2CH=CH_2$), 5.472 (dd, 1 H, $J_{2,1}$ 3.7, $J_{2,3}$ 10.3 Hz, H-2), 5.695 (m, 1 H, $COOCH_2CH=CH_2$), 6.732 (d, 1 H, H-1), 7.147, 7.175, 7.831, and 7.851 (4 d, 8 H, 2 $COC_6H_4CH_3$), and 8.607 (s, 1 H, NH); ¹³C, δ 21.6 ($COC_6H_4CH_3$), 27.9, 29.8, and 37.9 ($COCH_2CH_2COCH_3$), 61.7 (C-6), 90.1 ($CNHCCI_3$), 93.1 (C-1), 119.1 ($COOCH_2CH=CH_2$), 130.8 ($COOCH_2CH=CH_2$), 153.8 ($COOCH_2CH=CH_2$), 160.2 ($CNHCCI_3$), 165.4 ($COC_6H_4CH_3$), 172.2 ($COCH_2CH_2COCH_3$), and 205.0 ($COCH_2CH_2COCH_3$). Anal. Calcd for $C_{33}H_{34}CI_3NO_{12}$: C, 53.34; H, 4.61. Found: C, 53.38; H, 4.64.

4-Methoxyphenyl 2-deoxy-4,6-O-isopropylidene-2-phthalimido- β -D-glucopyranoside (4).—To a solution of 4-methoxyphenyl 2-deoxy-2-phthalimido- β -D-glucopyranoside¹⁹ (25; 8.03 g, 28.0 mmol) in DMF (140 mL) and 2,2-dimethoxypropane (28 mL) was added a catalytic amount of p-TsOH. After overnight stirring TLC (2:1 toluene-EtOAc) showed the conversion of 25 into 4 (R_f 0.28). Then the mixture was neutralised with Amberlyst-21 resin, filtered, and concentrated. Column chromatography (3:1 toluene-EtOAc) of the residue yielded 4, isolated as a syrup (11.02 g, 86%); $[\alpha]_D + 3^\circ$ (c 1). ¹H NMR data: δ 1.38 and 1.51 [2 s, 6 H, C(CH₃)₂], 3.67 (s, 3 H, C₆H₄OCH₃), 5.73 (d, 1 H, J_{1,2} 7.9 Hz, H-1), 6.63-6.88 (m, 4 H, C₆H₄OCH₃), and 7.60-7.86 (m, 4 H, Phth). Anal. Calcd for C₂₄H₂₅NO₈: C, 63.29; H, 5.53; N, 3.08. Found: C, 63.64; H, 5.56; N, 3.04.

4-Methoxyphenyl 3-O-allyloxycarbonyl-2-deoxy-4,6-O-isopropylidene-2-phthalimido-β-D-glucopyranoside (26).—To a solution of 4 (3.97 g, 8.72 mmol) in CH₂Cl₂ (48 mL) and pyridine (48 mL) at -35° C was added allyl chloroformate (3 \times 1.4 mL, at intervals of 10 min). When TLC (9:1 toluene-EtOAc) showed a complete conversion of 4 into 26 (R_f 0.34), the mixture was diluted with EtOAc (200 mL) and washed with satd aq NaHCO₃ (50 mL) and water (50 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (9:1 toluene-EtOAc) of the residue yielded 26, isolated as a syrup (4.52 g, 96%); $[\alpha]_{\rm D}$ + 22° (c 1). NMR data: ¹H, δ 1.417 and 1.521 [2 s, 6 H, C(CH₃)₂], 3.708 (s, 3 H, C₆H₄OCH₃), 4.30-4.43 (m, 2 H, COOCH₂CH=CH₂), 4.560 (dd, 1 H, J₂₁ 8.4, J₂₃ 9.5 Hz, H-2), 4.969 and 5.083 (2 m, 2 H, COOCH₂CH=CH₂), 5.869 (d, 1 H, H-1), 6.722 and 6.816 (2 d, 4 H, $C_6 H_4 OCH_3$), and 7.73–7.85 (m, 4 H, Phth); ¹³C, δ 19.0 and 28.9 [C(CH₃)₂], 55.2 and 55.6 (C₆H₄OCH₃ and C-2), 62.0 (C-6), 97.2 (C-1), 100.0 [C(CH₃)₂], 114.5 (2 C), 118.7 (2 C), 150.5, and 155.7 (C₆H₄OCH₃), 119.0 (COOCH₂CH=CH₂), 130.7 (COOCH₂CH=CH₂), and 154.3 (COOCH₂-CH=CH₂). Anal. Calcd for C₂₈H₂₉NO₁₀: C, 62.33; H, 5.42; N, 2.60. Found: C, 62.10; H, 5.42; N, 2.58.

3-O-Allyloxycarbonyl-2-deoxy-4,6-O-isopropylidene-2-phthalimido- α/β -D-glucopyranose (27).—To a solution of 26 (1.00 g, 1.85 mmol) in toluene (78 mL) and MeCN (109 mL) was added water (78 mL) and ammonium cerium(IV) nitrate (10.2 g). After stirring for 20 min, TLC (6:1 CH₂Cl₂-acetone) showed a complete conversion into 27 (R_f 0.59). Then the mixture was diluted with EtOAc (200 mL) and washed with aq satd NaHCO₃ (50 mL) and water (50 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (6:1 CH₂Cl₂-acetone) of the residue yielded 27, isolated as a syrup (0.61 g, 76%); $[\alpha]_D$ - 33.5° (c 1) (α/β 1:4). ¹³C NMR data β anomer: δ 19.0 and 28.9 [C(CH₃)₂], 56.9 (C-2), 62.0 (C-6), 93.1 (C-1), 99.9 [C(CH₃)₂], and 118.6 (COOCH₂CH=CH₂): Anal. Calcd for C₂₁H₂₅NO₉: C, 58.19; H, 5.35. Found: C, 58.12; H, 5.21.

3-O-Allyloxycarbonyl-2-deoxy-4,6-O-isopropylidene-2-phthalimido-β-D-glucopyranosyl trichloroacetimidate (13).—To a solution of 27 (1.15 g, 2.65 mmol) in CH₂Cl₂ (7.6 mL) and trichloroacetonitrile (2.8 mL) was added 1,8-diazabicyclo-[5.4.0]undec-7-ene (100 μL). After overnight stirring TLC (9:1 CH₂Cl₂-acetone) showed a complete conversion of 27 into 13 (R_f 0.82), and the mixture was purified by column chromatography (9:1 CH₂Cl₂-acetone) to yield 13, isolated as a syrup (1.42 g, 92%); [α]_D + 12° (c 1). NMR data: ¹H, δ 1.426 and 1.527 [2 s, 6 H, C(CH₃)₂], 4.618 (dd, 1 H, J_{2,1} 8.8, J_{2,3} 10.3 Hz, H-2), 5.007 and 5.119 (2 m, 2 H, COOCH₂CH=CH₂), 5.661 (m, 1 H, COOCH₂CH=CH₂), 6.635 (d, 1 H, H-1), 7.72-7.84 (m, 4 H, Phth), and 8.632 (s, 1 H, NH); ¹³C, δ 19.0 and 28.9 [C(CH₃)₂], 54.2 (C-2), 61.8 (C-6), 94.0 (C-1), 100.1 [C(CH₃)₂], 118.7 (COOCH₂CH=CH₂), 131.0 (COOCH₂CH=CH₂), 154.3 (COOCH₂CH=CH₂), and 160.7 (CNHCCl₃).

4-Methoxyphenyl O-(6-O-levulinoyl-2,3,4-tri-O-p-toluoyl-βD-glucopyranosyl)-(1 \rightarrow 3)-2-deoxy-4,6-O-isopropylidene-2-phthalimido- β -D-glucopyranoside (28).—To a solution of 3 (2.67 g, 3.43 mmol) and 4 (1.35 g, 2.97 mmol) in CH₂Cl₂ (12 mL) containing powdered AW-300 molecular sieves (1.3 g) was added CF₃SO₃SiMe₃ (11.4 μ L) at 0°C. The mixture was stirred for 30 min, when TLC (95:5 CH₂Cl₂acetone) showed the disappearance of 4 and the formation of 28 (R_f 0.41). Then the mixture was neutralised with Et₃N, diluted with EtOAc (50 mL), filtered through Celite, and washed with water (15 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (97:3 CH_2Cl_2 acetone) of the residue yielded 28, isolated as a syrup (2.57 g, 81%); $[\alpha]_{\rm D}$ + 15° (c 1). NMR data: ¹H, δ 1.463 and 1.693 [2 s, 6 H, C(CH₃)₂], 2.131 (s, 3 H, COCH₂CH₂COCH₃), 2.251, 2.334, and 2.364 (3 s, 9 H, 3 COC₆H₄CH₃), 2.53-2.68 (m, 4 H, $COCH_2CH_2COCH_3$), 3.660 (s, 3 H, $C_6H_4OCH_3$), 5.204 (dd, 1 H, $J_{2',1'}$ 8.1, J_{2',3'} 9.4 Hz, H-2'), 5.313 (d, 1 H, H-1'), 5.639 (d, 1 H, J_{1,2} 8.4 Hz, H-1), 6.701 and 6.757 (2 d, 4 H, C₆H₄OCH₃), 7.067, 7.088, 7.226, 7.335, 7.551, and 7.772 (6 d, 12 H, 3 $COC_6H_4CH_3$; ¹³C, δ 19.1 and 29.1 [C(CH_3)_2], 21.5 (COC_6H_4CH_3), 27.9, 29.1, and 37.8 (COCH₂CH₂COCH₃), 55.3 (C₆H₄OCH₃ and C-2), 98.1 (C-1), 99.7 $[C(CH_3)_2]$, 100.2 (C-1'), 114.4 (2 C), 118.4 (2 C), 150.6, and 155.5 ($C_4H_4OCH_3$), 164.5, 165.0, and 165.5 (3 COC₆H₄CH₃), 172.1 (COCH₂CH₂COCH₃), and 206.0 (COCH₂CH₂COCH₃). Anal. Calcd for C₅₉H₅₉NO₁₈: C, 66.22; H, 5.56; N, 1.31. Found: C, 65.45; H, 5.57; N, 1.29.

4-Methoxyphenyl O-(6-O-levulinoyl-2,3,4-tri-O-p-toluoyl- β -D-glucopyranosyl)-(1 \rightarrow 3)-2-deoxy-2-phthalimido- β -D-glucopyranoside (29).—To a solution of 28 (1.16 g, 1.09 mmol) in CH₂Cl₂ (19 mL) was added CF₃CO₂H (1.2 mL) and water (0.14 mL). After 45 min of stirring the de-isopropylidenation was complete as checked by TLC (29; R_f 0.33, 95:5 CH₂Cl₂-acetone). Then the mixture was concentrated, and toluene, EtOH, and CH_2Cl_2 (each $3 \times 100 \text{ mL}$) were evaporated from the residue. Column chromatography (85:15 CH_2Cl_2 -acetone) of the residue yielded **29**, isolated as a syrup (939 mg, 84%); $[\alpha]_D + 28^\circ$ (c 1). NMR data: ¹H, δ 2.218, 2.237, 2.321, and 2.335 (4 s, 12 H, 3 $COC_6H_4CH_3$ and $COCH_2CH_2COCH_3$), 2.64–2.80 (m, 4 H, $COCH_2CH_2COCH_3$), 3.673 (s, 3 H, $C_6H_4OCH_3$), 4.844 (d, 1 H, $J_{1',2'}$ 7.7 Hz, H-1'), 5.480 (d, 1 H, $J_{1,2}$ 8.4 Hz, H-1), 6.653 and 6.683 (2 d, 4 H, $C_6H_4OCH_3$), 6.843, 6.970, 7.138, 7.342, 7.528, and 7.746 (6 d, 12 H, 3 $COC_6H_4CH_3$); ¹³C, δ 21.5 ($COC_6H_4CH_3$), 27.7, 29.7, and 37.9 ($COCH_2CH_2CO-CH_3$), 54.8 and 55.4 ($C_6H_4OCH_3$ and C-2), 62.7 (C-6), 97.7 (C-1), 101.4 (C-1'), 114.5 (2 C), 118.2 (2 C), 150.7, and 155.4 ($C_6H_4OCH_3$), 172.2 ($COCH_2CH_2CO-CH_3$), and 206.4 ($COCH_2CH_2COCH_3$). Anal. Calcd for $C_{56}H_{55}NO_{18}$: C, 65.30; H, 5.38; N, 1.36. Found: C, 64.99; H, 5.40; N, 1.31.

4-Methoxyphenyl O-(6-O-levulinoyl-2,3,4-tri-O-p-toluoyl-B-D-glucopyranosyl)-(1 \rightarrow 3)-4,6-di-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (2).—To a solution of 29 (1.07 g, 1.04 mmol) in pyridine (10 mL) was added Ac₂O (10 mL) and 4-dimethylaminopyridine (5 mg). After overnight stirring, when TLC (9:1 CH_2Cl_2 -acetone) showed the acetylation to be complete (2; R_f 0.93), the mixture was concentrated and toluene, EtOH, and CH_2Cl_2 (each 3×100 mL) were evaporated from the residue. Column chromatography (95:5 CH_2Cl_2 -acetone) of the residue then yielded 2, isolated as a syrup (1.13 g, 97%); $[\alpha]_{D} + 16^{\circ} (c \ 1)$. NMR data: ¹H, δ 2.104, 2.145, and 2.175 (3 s, 9 H, 2 Ac and COCH₂CH₂COCH₃), 2.228, 2.319, and 2.381 (3 s, 9 H, 3 COC₆H₄CH₃), 2.60-2.74 (m, 4 H, COCH₂- CH_2COCH_3), 3.670 (s, 3 H, $C_6H_4OCH_3$), 4.526 (dd, 1 H, $J_{2,1}$ 8.4, $J_{2,3}$ 10.6 Hz, H-2), 4.691 (d, 1 H, J_{1',2'} 8.1 Hz, H-1'), 5.256 (dd, 1 H, J_{2',3'} 9.5 Hz, H-2'), 5.452 (d, 1 H, H-1), 6.651 and 6.693 (2 d, 4 H, C₆H₄OCH₃), 6.983, 7.028, 7.115, 7.457, 7.555, and 7.716 (6 d, 12 H, 3 $COC_6H_4CH_3$); ¹³C, δ 20.8 (COCH₃), 21.3-21.6 (3 COC₆H₄CH₃), 27.8, 29.6, and 37.7 (COCH₂CH₂COCH₃), 55.4 (C₆H₄OCH₃) and C-2), 97.7 (C-1), 100.8 (C-1'), 114.4 (2 C), 118.4 (2 C), 150.6, and 155.6 (C₆H₄OCH₃), 164.8, 165.0, and 165.5 (3 COC₆H₄CH₃), 169.4 and 170.4 (2 COCH₃), 172.1 (COCH₂CH₂COCH₃), and 205.9 (COCH₂CH₂COCH₃). Anal. Calcd for C₆₀H₅₀NO₂₀: C, 64.68; H, 5.34; N, 1.26. Found: C, 64.78; H, 5.42; N, 1.18.

4-Methoxyphenyl O-(2,3,4-tri-O-p-toluoyl- β -D-glucopyranosyl)-(1 \rightarrow 3)-4,6-di-Oacetyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (30).—To a solution of 2 (716 mg, 0.63 mmol) in EtOH (23 mL) and toluene (11.5 mL) was added NH₂NH₂. AcOH (300 mg). The mixture was stirred for 40 min, when TLC (1:1 toluene-EtOAc) showed the conversion of 2 into 30 (R_f 0.63). Then the mixture was concentrated, and column chromatography (1:1 toluene-EtOAc) of the residue yielded 30, isolated as a syrup (645 mg, 98%); [α]_D + 29° (c 1). NMR data: ¹H, δ 2.107 and 2.174 (2 s, 6 H, 2 Ac), 2.215, 2.324, and 2.369 (3 s, 9 H, 3 COC₆H₄CH₃), 3.665 (s, 3 H, C₆H₄OCH₃), 4.576 (dd, 1 H, J_{2,1} 8.5, J_{2,3} 10.9 Hz, H-2), 4.767 (d, 1 H, J_{1',2'}, 7.8 Hz, H-1'), 5.268 (dd, 1 H, J_{2',3'}, 9.6 Hz, H-2'), 5.461 (d, 1 H, H-1), 6.653 and 6.709 (2 d, 4 H, C₆H₄OCH₃), 6.981, 7.033, 7.136, 7.482, 7.577, and 7.771 (6 d, 12 H, $3 \operatorname{COC}_{6}H_{4}\operatorname{CH}_{3}$); ¹³C, δ 20.6 (COCH₃), 21.3 and 21.4 (2 C) ($3 \operatorname{COC}_{6}H_{4}CH_{3}$), 55.3 (C₆H₄OCH₃ and C-2), 60.9 and 62.1 (C-6,6'), 97.5 (C-1), 100.0 (C-1'), 114.2 (2 C), 118.2 (2 C), 150.4, and 155.3 (C₆H₄OCH₃), 164.7, 165.5, and 166.0 (3 COC₆H₄CH₃), 169.8, and 170.6 (2 COCH₃). Anal. Calcd for C₅₅H₅₃NO₁₈: C, 64.97; H, 5.26. Found: C, 64.72; H, 5.32.

4-Methoxyphenyl O-(2,3,4-tri-O-p-toluoyl- β -D-glucopyranosyluronic acid)-(1 \rightarrow 3)-4,6-di-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (31).—To a cold $(-78^{\circ}C)$ 2 M solution of oxalyl chloride in CH₂Cl₂ (0.5 mL) was added Me₂SO (150 μ L). After 10 min of stirring a solution of 30 (103 mg, 101 μ mol) in CH₂Cl₂ (1.7 mL) was added, and the mixture was stirred for 1 h at -78° C, whereby within 30 min a precipitate was formed. Diisopropylethylamine (739 μ L) was added, and after 10 min the mixture was diluted with EtOAc (35 mL) and washed with M HCl (10 mL) and satd aq NaCl (10 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. To a solution of the residue in t-BuOH (4.2 mL), 2-methyl-2-butene (1.6 mL), and water (2.6 mL) were added NaH_2PO_4 (260 mg) and NaClO₂ (260 mg). After overnight stirring TLC (10:9:1 CH₂Cl₂-EtOAcacetic acid) showed the conversion of 30 into 31 (R_f 0.51). Then the mixture was concentrated, and a solution of the residue in water was washed with hexane, acidified with M HCl, and extracted with EtOAc (3×20 mL). The organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (3:2)CH₂Cl₂-EtOAc followed by 10:9:1 CH₂Cl₂-EtOAc-acetic acid) of the residue yielded 31, isolated as a pure (NMR) syrup (73 mg, 70%); $[\alpha]_{D}$ + 34° (c 1). NMR data: ¹H, δ 2.089 and 2.143 (2 s, 6 H, 2 Ac), 2.239, 2.315, and 2.372 (3 s, 9 H, 3 COC₆H₄CH₃), 3.667 (s, 3 H, C₆H₄OCH₃), 4.262 (d, 1 H, J_{5',4'} 9.6 Hz, H-5'), 4.532 (dd, 1 H, J₂₁ 8.5, J₂₃ 10.8 Hz, H-2), 4.802 (d, 1 H, J_{1'2'} 7.7 Hz, H-1'), 5.281 (dd, 1 H, J_{2',3'} 9.3 Hz, H-2'), 5.451 (d, 1 H, H-1), 6.642 and 6.689 (2 d, 4 H, C₆H₄OCH₃), 7.000, 7.009, 7.109, 7.463, 7.548, and 7.740 (6 d, 12 H, 3 $COC_6H_4CH_3$); ¹³C, δ 20.6 (COCH₃), 21.4 and 21.5 (2 C) (3 COC₆H₄CH₃), 55.3 and 55.4 (C₆H₄OCH₃ and C-2), 62.6 (C-6), 97.4 (C-1), 100.5 (C-1'), 114.3 (2 C), 118.3 (2 C), 150.4, and 155.4 $(C_6H_4OCH_3)$, 164.6, 165.1, and 165.4 (3 $COC_6H_4CH_3$), 169.4, 169.9, and 170.8 (2 COCH₃ and COOH). A small amount of 31 was esterified with diazomethane in ether, and analysed by ¹H NMR: δ 2.103 and 2.228 (2 s, 6 H, 2 Ac), 2.255, 2.340, and 2.389 (3 s, 9 H, 3 COC₆H₄CH₃), 3.650 (s, 3 H, COOCH₃), 3.679 (s, 3 H, $C_6H_4OCH_3$, 4.171 (d, 1 H, $J_{5',4'}$ 9.7 Hz, H-5'), 4.504 (dd, 1 H, J_{21} 8.5, J_{23} 10.9 Hz, H-2), 4.715 (d, 1 H, J_{1',2'} 7.8 Hz, H-1'), 5.260 (dd, 1 H, J_{2',3'} 9.6 Hz, H-2'), 5.413 (d, 1 H, H-1), 6.644 and 6.682 (2 d, 4 H, C₆H₄OCH₃), 7.015, 7.027, 7.134, 7.440, 7.591, and 7.740 (6 d, 12 H, 3 $COC_6H_4CH_3$).

4-Methoxyphenyl O- $(\beta$ -D-glucopyranosyluronic acid)- $(1 \rightarrow 3)$ -2-acetamido-2deoxy- β -D-glucopyranoside (1).—A solution of 31 (44 mg, 42 μ mol) in ethanolic 30% methylamine (20 mL) was stirred for 3 days, when TLC (4:2:2:1 *n*-BuOH-EtOH-water-acetic acid) showed the conversion of the starting material into an intermediate amino compound (R_f 0.48). The mixture was concentrated, and a solution of the residue in MeOH (14.6 mL) and Ac₂O (204 μ L) was stirred for 2 h at 0°C, then concentrated, and 1:1 toluene–MeOH (3×15 mL) was evaporated from the residue. A solution of the residue in methanolic sodium methoxide (pH 10) was then stirred overnight at room temperature. After neutralisation with Amberlyst-15 the mixture was concentrated, and the residue was purified by gel filtration on Sephadex G-10 (water) to yield 1, isolated after lyophilisation as an amorphous, white powder (14 mg, 65%); $[\alpha]_D - 38^\circ$ (c 0.5, H₂O). NMR data (D₂O): ¹H, δ 2.025 (s, 3 H, NHCOCH₃), 3.805 (s, 3 H, C₆H₄OCH₃), 4.573 (d, 1 H, $J_{1',2'}$ 7.8 Hz, H-1'), 5.066 (d, 1 H, $J_{1,2}$ 8.5 Hz, H-1), 6.962 and 7.053 (2 d, each 2 H, C₆H₄OCH₃); ¹³C, δ 23.5 (NHCOCH₃), 55.7 (C₆H₄OCH₃ and C-2), 61.9 (C-6), 101.7 and 104.0 (C-1,1'), 116.5 (2 C), 119.7 (2 C), 152.3, and 156.2 (C₆H₄OCH₃), and 176.1 (COOH and NHCOCH₃); FABMS m/z 504 [M + H]⁺.

4-Methoxyphenyl O-(4-O-allyloxycarbonyl-6-O-levulinoyl-2,3-di-O-p-toluoyl-β-Dglucopyranosyl)- $(1 \rightarrow 3)$ -2-deoxy-4,6-O-isopropylidene-2-phthalimido- β -D-glucopyranoside (32).—To a solution of 9 (1.67 g, 2.24 mmol) and 4 (783 mg, 1.72 mmol) in CH₂Cl₂ (14 mL) containing powdered AW-300 molecular sieves (1.7 g) was added $CF_3SO_3SiMe_3$ (51 µL) at 0°C. When TLC (95:5 CH_2Cl_2 -acetone) showed the disappearance of 4 and the formation of 32 (R_f 0.47), the mixture was diluted with EtOAc (50 mL), filtered through Celite, and washed with water (20 mL), and the organic layer was dried ($MgSO_4$), filtered, and concentrated. Column chromatography (95:5 CH₂Cl₂-acetone) of the residue yielded 32, isolated as a syrup (1.55 g, 87%); $[\alpha]_{\rm D}$ + 68° (c 1). NMR data (CD₃COCD₃): ¹H, δ 1.471 and 1.677 [2 s, 6 H, C(CH₃)₂], 2.164 (s, 3 H, COCH₂CH₂COCH₃), 2.279 and 2.342 (2 s, 6 H, 2 COC₆H₄CH₃), 2.63-2.81 (m, 4 H, COCH₂CH₂COCH₃), 3.627 (s, 3 H, C₆H₄O-CH₃), 5.264 (d, 1 H, J_{1'2'} 8.1 Hz, H-1'), 5.652 (d, 1 H, J₁₂ 8.4 Hz, H-1), 6.676 and 6.719 (2 d, 4 H, $C_6H_4OCH_3$), 7.045, 7.146, 7.331, and 7.652 (4 d, 8 H, 2 $COC_6H_4CH_3$; ¹³C, δ 19.1 and 29.1 [C(CH_3)₂], 21.5 (COC₆H₄CH₃), 27.9, 29.7, and 37.8 (COCH₂CH₂COCH₃), 55.4 (C₆H₄OCH₃ and C-2), 98.0 (C-1), 99.6 $[C(CH_3)_2]$, 100.1 (C-1'), 114.4 (2 C), 118.4 (2 C), 150.5, and 155.5 ($C_6H_4OCH_3$), 118.8 (COOCH₂CH=CH₂), 153.6 (COOCH₂CH=CH₂), 164.4 and 165.3 (2 CO-C₆H₄CH₃), 172.2 (COCH₂CH₂COCH₃), and 206.0 (COCH₂CH₂COCH₃). Anal. Calcd for C₅₅H₅₇NO₁₉: C, 63.76; H, 5.55; N, 1.35. Found: C, 63.29; H, 5.58; N, 1.29.

4-Methoxyphenyl O-(4-O-allyloxycarbonyl-6-O-levulinoyl-2,3-di-O-p-toluoyl- β -Dglucopyranosyl)-(1 \rightarrow 3)-2-deoxy-2-phthalimido- β -D-glucopyranoside (33).—To a solution of 32 (1.65 g, 1.59 mmol) in CH₂Cl₂ (27.9 mL) was added water (0.2 mL) and CF₃CO₂H (1.7 mL). After 30 min of stirring TLC (9:1 CH₂Cl₂-acetone) showed the conversion of 32 into 33 (R_f 0.20). Then the mixture was concentrated, and toluene, EtOH, and CH₂Cl₂ (each 3×100 mL) were evaporated from the residue. Column chromatography (85:15 CH₂Cl₂-acetone) of the residue yielded 33, isolated as a syrup (1.40 g, 88%); $[\alpha]_D + 92^\circ$ (c 1). NMR data: ¹H, δ 2.230, 2.291, and 2.327 (3 s, 9 H, 2 COC₆H₄CH₃ and COCH₂CH₂COCH₃), 2.67-2.81 (m, 4 H, COCH₂CH₂COCH₃), 3.668 (s, 3 H, C₆H₄OCH₃), 4.666 (dd, 1 H, J_{2,1} 8.4, J_{2,3} 11.0 Hz, H-2), 4.768 (d, 1 H, J_{1',2'} 8.1 Hz, H-1'), 5.358 (dd, 1 H, J_{2',3'} 9.9 Hz, H-2'), 5.461 (d, 1 H, H-1), 5.662 (m, 1 H, COOCH₂C*H*=CH₂), 6.646 and 6.672 (2 d, 4 H, C₆*H*₄OCH₃), 6.851, 7.058, 7.352, and 7.635 (4 d, 8 H, 2 COC₆*H*₄CH₃); ¹³C, δ 21.5 (COC₆H₄CH₃), 27.8, 29.7, and 37.9 (COCH₂CH₂COCH₃), 54.8 and 55.5 (C₆H₄OCH₃ and C-2), 97.7 (C-1), 101.3 (C-1'), 114.5 (2 C), 118.2 (2 C), 150.7, and 155.4 (*C*₆H₄OCH₃), 118.9 (COOCH₂CH=CH₂), 164.4 and 165.4 (2 COC₆H₄CH₃), 172.3 (COCH₂CH₂COCH₃), and 206.5 (COCH₂CH₂COCH₃). Anal. Calcd for C₅₂H₅₃NO₁₉: C, 62.71; H, 5.36; N, 1.41. Found: C, 62.41; H, 5.37; N, 1.34.

4-Methoxyphenyl O-(4-O-allyloxycarbonyl-6-O-levulinoyl-2,3-di-O-p-toluoyl-β-Dglucopyranosyl)- $(1 \rightarrow 3)$ -4,6-di-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (34).—To a solution of 33 (1.40 g, 1.40 mmol) in pyridine (10 mL) was added Ac₂O (10 mL) and 4-dimethylaminopyridine (5 mg). After overnight stirring, when TLC showed the acetylation to be complete (34; R_f 0.82, 9:1 CH₂Cl₂-acetone), the mixture was concentrated, and toluene, EtOH, and CH₂Cl₂ (each 3×100 mL) were evaporated from the residue. Column chromatography (95:5 CH₂Cl₂acetone) then yielded 34, isolated as a syrup (1.48 g, 98%); $[\alpha]_{D}$ + 79° (c 1). NMR data: ¹H, δ 2.101 and 2.122 (2 s, 6 H, 2 Ac), 2.206, 2.299, and 2.389 (3 s, 9 H, 2 $COC_6H_4CH_3$ and $COCH_2CH_2COCH_3$), 2.64–2.77 (m, 4 H, $COCH_2CH_2COCH_3$), 3.676 (s, 3 H, $C_6H_4OCH_3$), 4.603 (d, 1 H, $J_{1',2'}$ 8.1 Hz, H-1'), 5.427 (d, 1 H, $J_{1,2}$ 8.4 Hz, H-1), 6.648 and 6.682 (2 d, 4 H, C₆H₄OCH₃), 7.035, 7.073, 7.453, and 7.656 (4 d, 8 H, 2 $COC_6H_4CH_3$); ¹³C, δ 20.7 (COCH₃), 21.6 (COC₆H₄CH₃), 27.8, 29.7, and 37.8 (COCH₂CH₂COCH₃), 55.5 (C₆H₄OCH₃ and C-2), 97.7 (C-1), 100.8 (C-1'), 114.4 (2 C), 118.4 (2 C), 150.6, and 155.5 (C₆H₄OCH₃), 118.8 (COOCH₂-CH=CH₂), 131.0 (COOCH₂CH=CH₂), 153.7 (COOCH₂CH=CH₂), 164.7 and 165.4 (2 COC₆H₄CH₃), 169.3 and 170.5 (2 COCH₃), 172.2 (COCH₂CH₂CO-CH₃), and 206.0 (COCH₂CH₂COCH₃). Anal. Calcd for C₅₆H₅₇NO₂₁: C, 62.27; H, 5.32; N, 1.30. Found: C, 62.36; H, 5.37; N, 1.22.

4-Methoxyphenyl O-(6-O-levulinoyl-2,3-di-O-p-toluoyl- β -D-glucopyranosyl)-(1 \rightarrow 3)-4,6-di-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (8).—To a solution of 34 (1.26 g, 1.17 mmol) in tetrahydrofuran (20 mL) and morpholine (0.7 mL) was added tetrakis(triphenylphosphine)palladium (233 mg). The mixture was stirred and boiled under reflux until the de-allyloxycarbonylation was complete (8; TLC R_f 0.38, 9:1 CH_2Cl_2 -acetone). Then the mixture was diluted with EtOAc (100 mL) and washed with water (30 mL), and the organic layer was dried ($MgSO_4$), filtered, and concentrated. Column chromatography (9:1 CH₂Cl₂-acetone) of the residue yielded 8, isolated as a syrup (1.11 g, 95%); $[\alpha]_{\rm D}$ + 86° (c 1). NMR data: ¹H, δ 2.159 and 2.181 (2 s, 6 H, 2 Ac), 2.294, 2.393, and 2.792 (3 s, 9 H, 2 COC₆H₄CH₃ and COCH₂CH₂COCH₃), 2.62-2.85 (m, 4 H, COCH₂CH₂COCH₃), 3.665 (s, 3 H, $C_6H_4OCH_3$), 4.852 (d, 1 H, $J_{1',2'}$ 8.1 Hz, H-1'), 5.072 (dd, 1 H, $J_{2',3'}$ 9.6 Hz, H-2'), 5.586 (d, 1 H, $J_{1,2}$ 8.4 Hz, H-1), 6.713 and 6.749 (2 d, 4 H, $C_6H_4OCH_3$), 7.103, 7.150, 7.419, and 7.664 (4 d, 8 H, 2 $COC_6H_4CH_3$); ¹³C, δ 20.8 (COCH₃), 21.6 (COC₆H₄CH₃), 27.9, 29.7, and 37.9 (COCH₂CH₂COCH₃), 55.5 (C₆H₄OCH₃) and C-2), 62.5 and 63.1 (C-6,6'), 97.7 (C-1), 100.8 (C-1'), 114.4 (2 C), 118.4 (2 C),

150.7, and 155.6 ($C_6H_4OCH_3$), 165.0 and 166.0 (2 $COC_6H_4CH_3$), 169.4 and 170.7 (2 $COCH_3$), 173.1 ($COCH_2CH_2COCH_3$), and 206.8 ($COCH_2CH_2COCH_3$). Anal. Calcd for $C_{52}H_{53}NO_{19}$: C, 62.71; H, 5.36; N, 1.41. Found: C, 62.74; H, 5.46; N, 1.32.

4-Methoxyphenyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)- $(1 \rightarrow 4)$ -O-(6-O-levulinoyl-2,3-di-O-p-toluoyl- β -D-glucopyranosyl)- $(1 \rightarrow 3)$ -4,6di-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (6).—To a solution of 8 (114 mg, 0.114 mmol) and 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-*β*-D-glucopyranosyl trichloroacetimidate¹³ (7, 135 mg, 0.234 mmol) in CH₂Cl₂ (1.5 mL) containing powdered AW-300 molecular sieves (100 mg) was added a solution of M BF₃ \cdot Et₂O in CH₂Cl₂ (70 μ L). After 3 h stirring of the mixture at room temperature, TLC (1:1 toluene-acetone) showed the disappearance of 8 and the formation of 6 (R_f 0.24). Then Et₃N was added to neutralise the acids, the mixture was diluted with EtOAc (50 mL), filtered through Celite, and washed with water (10 mL), and the organic layer was dried (MgSO4), filtered, and concentrated. Column chromatography (1:1 toluene-acetone) of the residue yielded 6, isolated as a syrup (130 mg, 81%); $[\alpha]_{D}$ + 51° (c 1). NMR data: ¹H, δ 1.772, 1.891, 1.901, 1.976, and 2.075 (5 s, 15 H, 5 Ac), 2.241 (s, 3 H, COCH₂CH₂COCH₃), 2.311 and 2.377 (2 s, 6 H, 2 $COC_6H_4CH_3$), 2.57–2.78 (m, 4 H, $COCH_2CH_2COCH_3$), 3.662 (s, 3 H, $C_6H_4OCH_3$, 4.433 (d, 1 H, $J_{1'2'}$ 7.7 Hz, H-1'), 5.321 and 5.356 (2 d, 2 H, $J_{1,2} = J_{1'',2''} = 8.4$ Hz, H-1,1"), 6.626 and 6.648 (2 d, 4 H, C₆H₄OCH₃), 7.006, 7.069, 7.391, and 7.714 (4 d, 8 H, 2 $COC_6H_4CH_3$); ¹³C, δ 20.2, 20.4, 20.6 (2 C), and 20.7 (5 COCH_3) , 21.5 and 21.6 $(2 \text{ COC}_6\text{H}_4\text{CH}_3)$, 27.6, 29.6, and 37.8 (COCH₂CH₂COCH₃), 54.6, 55.2, and 55.6 (C₆H₄OCH₃ and C-2,2"), 61.4, 62.2, and 62.5 (C-6,6',6"), 97.5 and 97.6 (C-1,1"), 100.8 (C-1'), 114.2 (2 C), 118.3 (2 C), 150.5 and 155.4 (C₆H₄OCH₃), 164.9 and 165.0 (2 COC₆H₄CH₃), 169.2 (2 C), 169.9, 170.3, and 170.6 (5 COCH₃), 171.8 (COCH₂CH₂COCH₃), and 206.0 (COCH₂CH₂COCH₃). Anal. Calcd for C₇₂H₇₂N₂O₂₈: C, 61.18; H, 5.14; N, 1.98. Found: C, 61.07; H, 5.18; N, 1.97.

4-Methoxyphenyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)(1 → 4)-O-(2,3-di-O-p-toluoyl-β-D-glucopyranosyl)-(1 → 3)-4,6-di-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (**35**).—To a solution of **6** (231 mg, 0.163 mmol) in EtOH (23.3 mL) and toluene (11.7 mL) was added NH₂NH₂ · AcOH (75 mg). After 40 min of stirring TLC (1:1 toluene-EtOAc) showed the conversion of **6** into **35** (R_f 0.39). Then the mixture was concentrated, and column chromatography (1:1 toluene-EtOAc) of the residue yielded **35**, isolated as a syrup (189 mg, 88%); [α]_D + 57° (*c* 1). NMR data: ¹H, δ 1.785, 1.891, 1.924, 1.963, and 2.069 (5 s, 15 H, 5 Ac), 2.343 and 2.363 (2 s, 6 H, 2 COC₆H₄CH₃), 3.667 (s, 3 H, C₆H₄OCH₃), 4.643 (d, 1 H, $J_{1',2'}$ 7.3 Hz, H-1'), 5.388 and 5.494 (2 d, 2 H, $J_{1,2} = J_{1'',2''} = 8.4$ Hz, H-1,1"), 6.639 and 6.678 (2 d, 4 H, C₆H₄OCH₃), 7.027, 7.126, 7.462, and 7.744 (4 d, 8 H, 2 COC₆H₄CH₃); ¹³C, δ 20.3, 20.5, 20.6, and 20.8 (2 C) (5 COCH₃), 21.6 (COC₆H₄CH₃), 54.9, 55.4, and 55.5 (C₆H₄OCH₃ and C-2,2"), 60.5, 61.2, and 62.2 (C-6,6',6"), 97.7 and 98.0 (C-1,1"), 99.7 (C-1'), 114.4 (2 C), 118.5 (2 C), 150.6, and 155.5 ($C_6H_4OCH_3$), 164.8 ($COC_6H_4CH_3$), 169.2, 169.6, 170.0, 170.4, and 170.6 (5 COCH₃). Anal. Calcd for $C_{67}H_{66}N_2O_{26}$: C, 61.18; H, 5.06; N, 2.13. Found: C, 61.58; H, 5.29; N, 2.02.

4-Methoxyphenyl O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-B-D-glucopyranosyl)- $(1 \rightarrow 4)$ -O-(2,3-di-O-p-toluoyl- β -D-glucopyranosyluronic acid)- $(1 \rightarrow 3)$ -4,6-di-Oacetyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (36).—To a cold (-78°C) 2 M solution of oxalyl chloride in CH₂Cl₂ (0.9 mL) was added Me₂SO (121 μ L), and the solution was stirred for 10 min. Then a solution of 35 (122 mg, 93 μ mol) in CH_2Cl_2 (2 mL) was added, and the mixture was stirred for 4 h at -78°C, whereby within 30 min a precipitate was formed. Diisopropylethylamine (656 μ L) was added, and after 10 min the mixture was diluted with EtOAc (30 mL) and washed with M HCl (10 mL) and ag 5% NaCl (10 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. To a solution of the residue in t-BuOH (3.7) mL), 2-methyl-2-butene (1.4 mL), and water (2.3 mL) were added NaH₂PO₄ (230 mg) and NaClO₂ (230 mg). The mixture was stirred overnight, when TLC (10:9:1 CH_2Cl_2 -EtOAc-AcOH) showed the complete conversion of 35 into 36 (R_f 0.24). Then the mixture was concentrated, and a solution of the residue in water was washed with hexane, acidified with M HCl, and extracted with EtOAc (3×20 mL). The organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (3:2 CH₂Cl₂-EtOAc followed by 10:9:1 CH₂Cl₂-EtOAc-AcOH) of the residue yielded 36, isolated as a pure (NMR) syrup (118 mg, 95%); $[\alpha]_{\rm p}$ + 16° (c 1). ¹H NMR data (1:1 CDCl₃-CD₃OD): δ 1.793, 1.866, 1.899, 1.927, and 2.085 (5 s, 15 H, 5 Ac), 2.316 and 2.399 (2 s, 6 H, 2 COC₆H₄CH₃), 3.669 (s, 3 H, C₆H₄OCH₃), 3.785 (d, 1 H, J_{5',4'} 9.5 Hz, H-5'), 4.385 and 4.743 (2 dd, 2 H, H-2,2"), 4.551 (d, 1 H, J_{1',2'} 7.7 Hz, H-1'), 5.116 (dd, 1 H, J_{2',3'} 9.5 Hz, H-2'), 5.352 and 5.384 (2 d, 2 H, J_{1.2/1".2"} 8.4 and 8.8 Hz, H-1,1"), 6.648 (m, 4 H, C₆H₄OCH₃), 7.003, 7.099, 7.346, and 7.705 (4 d, 8 H, 2 COC₆H₄CH₃). A small amount of 36 was esterified with diazomethane in ether, and analysed by ¹H NMR: δ 1.775, 1.883, 1.893, 1.905, and 2.070 (5 s, 15 H, 5 Ac), 2.322 and 2.381 (2 s, 6 H, 2 $COC_6H_4CH_3$), 3.554 (s, 3 H, COOCH₃), 3.664 (s, 3 H, C₆H₄OCH₃), 4.499 (d, 1 H, J_{1'.2'} 7.7 Hz, H-1'), 4.888 and 5.356 (2 d, 2 H, J_{1.2/1".2"} 8.8 and 8.4 Hz, H-1,1"), 6.633 (m, 4 H, C₆H₄OCH₃), 6.999, 7.093, 7.378, and 7.717 (4 d, 8 H, 2 COC₆H₄CH₃).

4-Methoxyphenyl O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 4)-O-(β -D-glucopyranosyluronic acid)-(1 \rightarrow 3)-2-acetamido-2-deoxy- β -D-glucopyranoside (5). A solution of **36** (30 mg, 23 μ mol) in methanolic 40% methylamine (20 mL) was stirred for 4 days, when TLC (4:2:2:1 *n*-BuOH-EtOH-water-AcOH) showed a complete conversion of the starting material into the intermediate amino compound (R_f 0.48). The mixture was concentrated, and a solution of the residue in MeOH (5 mL) and Ac₂O (140 μ L) was stirred for 2 h at 0°C. Then TLC (4:2:2:1 *n*-BuOH-EtOH-water-AcOH) showed the formation of 5 (R_f 0.50). The mixture was concentrated, and 1:1 toluene-MeOH (3 \times 10 mL) was evaporated from the residue. Gel filtration on Sephadex G-10 (water) of the residue yielded 5, isolated after lyophilisation as a white, amorphous powder (13 mg, 79%); [α]_D - 10.5° (*c* 0.5, H₂O). ¹H NMR data (1:1 D₂O-CD₃OD): δ 2.005 and 2.031 (2 s, 6 H, 2 NHCOCH₃), 3.372, 3.683, and 4.069 (3 dd, 3 H, H-2,2',2"), 3.793 (s, 3 H, C₆H₄OCH₃), 4.494 and 4.525 (2 d, 2 H, $J_{1',2'/1'',2''}$ 8.1 and 8.4 Hz, H-1',1"), 5.034 (d, 1 H, $J_{1,2}$ 8.8 Hz, H-1), 6.952 and 7.035 (2 d, 4 H, C₆H₄OCH₃); FABMS m/z 707 [M + H]⁺.

4-Methoxyphenyl O-(3-O-allyloxycarbonyl-2-deoxy-4,6-O-isopropylidene-2-phthalimido- β -D-glucopyranosyl)-(1 \rightarrow 4)-O-(6-O-levulinoyl-2,3-di-O-p-toluoyl- β -D-glucopyranosyl)- $(1 \rightarrow 3)$ -4,6-di-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (37). —To a solution of 13 (692 mg, 1.20 mmol) and 8 (477 mg, 0.48 mmol) in CH_2Cl_2 (6 mL) containing powdered AW-300 molecular sieves (0.4 g), 2 M BF₃ · Et₂O in CH_2Cl_2 (179 μ L) was added at room temperature. After 1 h of stirring, when TLC (9:1 CH₂Cl₂-acetone) showed the disappearance of 8 and the formation of 37 (R_f 0.49), Et₃N was added to neutralise the mixture. Then the suspension was diluted with EtOAc (50 mL), filtered through Celite, and washed with water (10 mL), and the organic layer was dried ($MgSO_4$), filtered, and concentrated. Column chromatography (9:1 CH₂Cl₂-acetone) of the residue yielded 37, isolated as a syrup (598 mg, 88%); $[\alpha]_{D}$ + 27.5° (c 1). NMR data: ¹H, δ 1.129 and 1.234 [2 s, 6 H, C(CH₃)₂], 1.981 and 2.070 (2 s, 6 H, 2 Ac), 2.239 (s, 3 H, COCH₂CH₂COCH₃), 2.326 and 2.375 (2 s, 6 H, 2 COC₆H₄CH₃), 2.57-2.81 (m, 4 H, COCH₂CH₂CO-CH₃), 3.662 (s, 3 H, C₆H₄OCH₃), 4.322 (m, 2 H, COOCH₂CH=CH₂), 4.393 (d, 1 H, J_{1'.2'} 7.7 Hz, H-1'), 4.961 and 5.053 (2 m, 2 H, COOCH₂CH=CH₂), 5.220 and 5.354 (2 d, 2 H, $J_{1.2/1'',2''}$ 8.1 and 8.4 Hz, H-1,1"), 5.580 (m, 1 H, $COOCH_2CH=CH_2$), 6.636 (m, 4 H, $C_5H_4OCH_3$), 7.020, 7.134, 7.421, and 7.744 (4 d, 8 H, 2 $COC_6H_4CH_3$); ¹³C, δ 18.4 and 28.7 $[C(CH_3)_2]$, 20.6 and 20.8 (2 COCH₃), 21.6 and 21.7 (2 COC₆H₄CH₃), 27.7, 29.9, and 37.8 (COCH₂CH₂CO- CH_3), 55.3 (2 C) and 55.6 ($C_6H_4OCH_3$ and C-2,2"), 60.8, 62.3, and 62.4 (C-6,6',6"), 97.6 and 98.1 (C-1,1"), 99.5 [C(CH₃)₂], 100.8 (C-1'), 114.3 (2 C), 118.4 (2 C), 150.6, and 155.5 (C₆H₄OCH₃), 154.3 (COOCH₂CH=CH₂), 165.0 and 165.2 (2 COC₆H₄CH₃), 169.2 (COCH₃), and 171.9 (COCH₂CH₂COCH₃). Anal. Calcd for C73H74N2O27: C, 62.16; H, 5.36; N, 1.99. Found: C, 61.56; H, 5.24; N, 1.94.

4-Methoxyphenyl O-(2-deoxy-4,6-O-isopropylidene-2-phthalimido- β -D-glucopyranosyl)-(1 \rightarrow 4)-O-(6-O-levulinoyl-2,3-di-O-p-toluoyl- β -D-glucopyranosyl)-(1 \rightarrow 3)-4, 6-di-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (12).—To a solution of 37 (598 mg, 0.42 mmol) in tetrahydrofuran (7 mL) and morpholine (280 μ L) was added tetrakis(triphenylphosphine)palladium (85 mg). The mixture was boiled under reflux for 25 min, when TLC (9:1 CH₂Cl₂-acetone) showed the de-allyloxycarbonylation to be complete (12; R_f 0.37), then diluted with EtOAc (50 mL) and washed with water (10 mL). The organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (85:15 CH₂Cl₂-acetone) of the residue yielded 12, isolated as a syrup (535 mg, 95%); $[\alpha]_D$ + 34.5° (c 1). NMR data: ¹H, δ 1.160 and 1.261 [2 s, 6 H, C(CH₃)₂], 1.978 and 2.069 (2 s, 6 H, 2 Ac), 2.231 (s, 3 H, COCH₂CH₂COCH₃), 2.322 and 2.374 (2 s, 6 H, 2 COC₆H₄CH₃), 2.56-2.76 (m, 4 H, COCH₂CH₂COCH₃), 3.659 (s, 3 H, C₆H₄OCH₃), 3.998 and 4.426 (2 dd, 2 H, H-2,2"), 4.399 (d, 1 H, $J_{1',2'}$ 8.1 Hz, H-1'), 5.124 and 5.359 (2 d, 2 H, $J_{1,2} = J_{1'',2''} = 8.4$ Hz, H-1,1"), 6.622 and 6.650 (2 d, 4 H, $C_6H_4OCH_3$), 7.019, 7.125, 7.420, and 7.737 (4 d, 8 H, 2 $COC_6H_4CH_3$); ¹³C, δ 18.6 and 28.8 [C(CH_3)₂], 20.6, and 20.8 (2 $COCH_3$), 21.6 and 21.7 (2 $COC_6H_4CH_3$), 27.7, 29.7, and 37.8 ($COCH_2CH_2COCH_3$), 55.3, 55.4, and 56.7 ($C_6H_4OCH_3$ and C-2,2"), 60.9, 62.3, and 62.5 (C-6,6',6''), 97.5 and 98.3 (C-1,1"), 99.5 [$C(CH_3)_2$], 100.8 (C-1'), 114.3 (2 C), 118.4 (2 C), 150.6, and 155.5 ($C_6H_4OCH_3$), 165.0 and 165.1 (2 $COC_6H_4CH_3$), 169.2 and 170.7 (2 $COCH_3$), and 171.8 ($COCH_2CH_2COCH_3$). Anal. Calcd for $C_{69}H_{70}N_2O_{25}$: C, 62.44; H, 5.32; N, 2.11. Found: C, 62.56; H, 5.32; N, 1.94.

4-Methoxyphenyl O-(6-O-levulinoyl-2,3,4-tri-O-p-toluoyl-β-D-glucopyranosyl)-(1 \rightarrow 3)-O-(2-deoxy-4,6-O-isopropylidene-2-phthalimido- β -D-glucopyranosyl)-(1 \rightarrow 4)- $O-(6-O-levulinoyl-2,3-di-O-p-toluoyl-\beta-D-glucopyranosyl)-(1 \rightarrow 3)-4,6-di-O-acetyl-2$ deoxy-2-phthalimido-B-D-glucopyranoside (38).--- To a solution of 3 (347 mg, 0.45 mmol) and 12 (118 mg, 89 µmol) in CH₂Cl₂ (2 mL) containing powdered AW-300 molecular sieves (0.1 g) 2.25 M CF₃SO₃SiMe₃ in CH₂Cl₂ (40 µL) was added at 0°C. After 2 h of stirring TLC (9:1 CH₂Cl₂-acetone) showed the disappearance of 12 and the formation of 38 (R_f 0.43). The mixture was neutralised with Et₃N, diluted with EtOAc (40 mL), filtered through Celite, and washed with water (10 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (9:1 CH_2Cl_2 -acetone) of the residue yielded 38, isolated as a syrup (151 mg, 87%); $[\alpha]_{\rm D}$ + 5.5° (c 1). NMR data: ¹H, δ 1.216 and 1.302 [2 s, 6 H, $C(CH_3)_2$], 1.918 and 2.058 (2 s, 6 H, 2 Ac), 2.160 and 2.224 (2 s, 6 H, 2 COCH₂CH₂COCH₃), 2.238, 2.315, 2.326, and 2.370 (6 H) (4 s, 15 H, 5 COC₆H₄CH₃), 2.51-2.71 (m, 8 H, 2 COCH₂CH₂COCH₃), 3.657 (s, 3 H, $C_6H_4OCH_3$, 4.324 and 4.886 (2 d, 2 H, $J_{1',2'} = J_{1'',2''} = 7.7$ Hz, H-1',1'''), 4.967 and 5.337 (2 d, 2 H, $J_{1.2/1'',2''}$ 8.4 and 8.8 Hz, H-1,1"), 6.627 (m, 4 H, C₆H₄OCH₃), 6.962, 6.968, 7.012, 7.105, 7.132, 7.253, 7.401, 7.511, 7.709, and 7.733 (10 d, 20 H, 5 $COC_6H_4CH_3$; ¹³C, δ 18.7 and 29.1 [C(CH_3)_2], 20.5 and 20.8 (2 COCH_3), 21.5-21.7 (5 COC₆H₄CH₃), 27.6, 27.9, 29.3, 29.7, 37.7, and 37.9 (2 COCH₂CH₂COCH₃), 55.2, 55.3, and 55.5 (C₆H₄OCH₃ and C-2,2"), 60.8, 62.2, 62.3, and 62.6 (C-6,6',6",6"), 97.5 and 98.1 (C-1,1"), 99.2 [C(CH₃)₂], 100.1 and 100.8 (C-1',1"'), 114.3 (2 C), 118.4 (2 C), 150.6 and 155.5 (C₆H₄OCH₃), 165.0 (COC₆H₄CH₃), 169.1 and 170.7 (2 COCH₃). Anal. Calcd for C₁₀₄H₁₀₄N₂O₃₅: C, 64.32; H, 5.40; N, 1.44. Found: C, 64.67; H, 5.76; N, 1.36.

4-Methoxyphenyl O-(6-O-levulinoyl-2,3,4-tri-O-p-toluoyl- β -D-glucopyranosyl)-(1 \rightarrow 3)-O-(2-deoxy-2-phthalimido- β -D-glucopyranosyl)-(1 \rightarrow 4)-O-(6-O-levulinoyl-2,3di-O-p-toluoyl- β -D-glucopyranosyl)-(1 \rightarrow 3)-4,6-di-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (39).—To a solution of 38 (111 mg, 57 μ mol) in CH₂Cl₂ (1.5 mL) was added CF₃CO₂H (63.4 μ L) and water (10 μ L). After 2 h of stirring, when TLC (85:15 CH₂Cl₂-acetone) showed the de-isopropylidenation to be complete (39; R_f 0.33), the mixture was diluted with EtOAc (40 mL) and washed with aq satd NaHCO₃ (10 mL) and water (10 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (85:15 CH₂Cl₂- acetone) of the residue yielded **39**, isolated as a syrup (93 mg, 85%); $[\alpha]_D + 19.5^{\circ}$ (c 1). NMR data: ¹H, δ 1.925 and 2.066 (2 s, 6 H, 2 Ac), 2.159 and 2.234 (2 s, 6 H, 2 COCH₂CH₂COCH₃), 2.218, 2.323, 2.336, 2.342, and 2.381 (5 s, 15 H, 5 COC₆H₄CH₃), 2.53–2.73 (m, 8 H, 2 COCH₂CH₂COCH₃), 3.662 (s, 3 H, C₆H₄OCH₃), 4.353 and 4.670 (2 d, 2 H, $J_{1',2'/1'',2'''}$ 7.3 and 7.7 Hz, H-1',1'''), 4.916 and 5.358 (2 d, 2 H, $J_{1,2/1'',2''}$ 8.1 and 8.4 Hz, H-1,1''), 6.624 and 6.652 (2 d, 4 H, C₆H₄OCH₃), 6.845, 6.952, 7.016, 7.120, 7.138, 7.311, 7.389, 7.494, 7.711, and 7.727 (10 d, 20 H, 5 COC₆H₄CH₃); ¹³C, δ 20.6 and 20.8 (2 COCH₃), 21.5, 21.6, and 21.7 (3 C) (5 COC₆H₄CH₃), 27.7, 29.3, 29.7, 29.9, 37.7, and 37.8 (2 COCH₂CH₂COCH₃), 54.8, 55.3, and 55.6 (C₆H₄OCH₃) and C-2,2''), 62.3 (2 C), 62.5, and 62.7 (C-6,6',6'',6'''), 97.5 and 97.7 (C-1,1''), 101.1 and 101.3 (C-1',1'''), 114.3 (2 C), 118.4 (2 C), 150.6, and 155.5 (C₆H₄OCH₃), 164.5, 165.0, 165.1, and 165.6 (2 C) (5 COC₆H₄CH₃), 169.2 and 170.7 (2 COCH₃), 171.8 and 172.2 (2 COCH₂CH₂COCH₃), 206.1 and 206.4 (2 COCH₂CH₂COCH₃). Anal. Calcd for C₁₀₁H₁₀₀N₂O₃₅: C, 63.78; H, 5.30; N, 1.47. Found: C, 63.46; H, 5.41; N, 1.42.

4-Methoxyphenyl O-(6-O-levulinoyl-2,3,4-tri-O-p-toluoyl-B-D-glucopyranosyl)-(1 \rightarrow 3)-O-(4,6-di-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)-(1 \rightarrow 4)-O-(6-O-levulinoyl-2,3-di-O-p-toluoyl- β -D-glucopyranosyl)- $(1 \rightarrow 3)$ -4,6-di-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (11).—To a solution of 39 (60 mg, 31 μ mol) in pyridine (2 mL) was added Ac₂O (2 mL) and 4-dimethylaminopyridine (5 mg). After overnight stirring at room temperature TLC (85: 15 CH_2Cl_2 -acetone) showed the acetylation to be complete (11; R_f 0.84). The mixture was concentrated and toluene, EtOH, and CH_2Cl_2 (3 × 20 mL) were evaporated from the residue. Column chromatography (9:1 CH₂Cl₂-acetone) then yielded 11, isolated as a syrup (60 mg, 96%); $[\alpha]_{\rm D}$ + 11.5° (c 1). NMR data: ¹H, δ 1.896, 1.919, 2.004, and 2.063 (4 s, 12 H, 4 Ac), 2.146 and 2.234 (2 s, 6 H, 2 COCH₂CH₂COCH₃), 2.222, 2.302, 2.315, 2.368, and 2.392 (5 s, 15 H, 5 COC₆H₄CH₃), 3.657 (s, 3 H, $C_6H_4OCH_3$, 4.355 and 4.550 (2 d, 2 H, $J_{1',2'} = J_{1'',2''} = 7.7$ Hz, H-1',1'''), 4.934 and 5.349 (2 d, 2 H, $J_{1,2/1'',2''}$ 8.8 and 8.4 Hz, H-1,1"), 6.633 (m, 4 H, C₆H₄OCH₃), 6.967, 6.985, 7.017, 7.044, 7.100, 7.356, 7.410, 7.518, 7.676, and 7.683 (10 d, 20 H, 5 $COC_6 H_4 CH_3$; ¹³C, δ 20.6, 20.7 (2 C), and 20.8 (4 COCH₃), 21.5, 21.6 (3 C), and 21.7 (5 COC₆H₄CH₃), 27.6, 27.7, 29.8, 29.9, and 37.8 (2 C) (2 COCH₂CH₂COCH₃), 55.3, 55.6, and 55.7 (C₆H₄OCH₃ and C-2,2"), 62.0, 62.3, 62.4, and 62.5 (C-6,6',6",6"'), 97.5 and 97.7 (C-1,1"), 100.7 and 101.0 (C-1',1"'), 114.3 (2 C), 118.4 (2 C), 150.6, and 155.5 (C₆H₄OCH₃), 164.8, 164.9 (2 C), 165.0, and 165.7 (5 COC₆H₄CH₃), 169.1, 169.2, 170.5, and 170.7 (4 COCH₃), 171.8 and 172.2 (2 COCH₂CH₂COCH₃), 206.0, and 206.2 (2 COCH₂CH₂COCH₃). Anal. Calcd for C₁₀₅H₁₀₄N₂O₃₇: C, 63.50; H, 5.28; N, 1.41. Found: C, 63.27; H, 5.35; N, 1.35.

4-Methoxyphenyl O-(2,3,4-tri-O-p-toluoyl- β -D-glucopyranosyl)-(1 \rightarrow 3)-O-(4,6-di-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)-(1 \rightarrow 4)-O-(2,3-di-O-p-toluoyl- β -D-glucopyranosyl)-(1 \rightarrow 3)-4,6-di-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (40).—To a solution of 11 (93 mg, 47 μ mol) in EtOH (7.0 mL) and toluene

(3.5 mL) was added NH₂NH₂·AcOH (43.2 mg). After 45 min of stirring, when TLC (3:2 CH₂Cl₂-EtOAc) showed the de-levulinoylation to be complete (**40**; R_f 0.46), the mixture was concentrated, and column chromatography (3:2 CH₂Cl₂-EtOAc) of the residue yielded **40**, isolated as a syrup (64 mg, 76%); $[\alpha]_D + 30^\circ$ (*c* 1). NMR data: ¹H, δ 1.917, 1.937, 2.018, and 2.060 (4 s, 12 H, 4 Ac), 2.228, 2.335 (6 H), 2.355, and 2.385 (4 s, 15 H, 5 COC₆H₄CH₃), 3.668 (s, 3 H, C₆H₄OCH₃), 4.559 and 4.603 (2 d, 2 H, $J_{1',2'/1'',2'''}$ 7.3 and 7.7 Hz, H-1',1'''), 5.084 and 5.371 (2 d, 2 H, $J_{1,2} = J_{1'',2''} = 8.4$ Hz, H-1,1''), 6.634 and 6.668 (2 d, 4 H, C₆H₄OCH₃), 6.978, 7.008, 7.036, 7.096, 7.131, 7.429, 7.446, 7.547, 7.695, and 7.745 (10 d, 20 H, 5 COC₆H₄CH₃); ¹³C, δ 20.7 (2 C) and 20.8 (2 C) (4 COCH₃), 21.6 and 21.7 (4 C) (5 COC₆H₄CH₃), 55.4, 55.6, and 55.7 (C₆H₄OCH₃ and C-2,2''), 60.6, 61.1, 61.7, and 62.3 (C-6,6',6'',6'''), 97.7 and 98.0 (C-1,1''), 99.8 and 100.0 (C-1',1'''), 114.4 (2 C), 118.5 (2 C), 150.6, and 155.6 (C₆H₄OCH₃), 164.9 (3 C) and 165.7 (2 C) (5 COC₆H₄CH₃), 169.6, 169.8, 170.6, and 170.7 (4 COCH₃). Anal. Calcd for C₉₅H₉₂N₂O₃₃: C, 63.75; H, 5.18; N, 1.57. Found: C, 63.65; H, 5.48; N, 1.69.

4-Methoxyphenyl O-(2,3,4-tri-O-p-toluoyl- β -D-glucopyranosyluronic acid)-(1 \rightarrow 3)-O-(4,6-di-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl)-(1 → 4)-O-(2,3-di-Op-toluoyl- β -D-glucopyranosyluronic acid)- $(1 \rightarrow 3)$ -4,6-di-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (41).—To a cold (-78°C) 2 M solution of oxalyl chloride in CH₂Cl₂ (0.7 mL) was added Me₂SO (106 μ L) and the mixture was stirred for 10 min. Then a solution of 40 (64 mg, 36 μ mol) in CH₂Cl₂ (1 mL) was added and the mixture was stirred for 5 h, whereby in 30 min a precipitate was formed. Diisopropylethylamine (0.52 mL) was added, and after 10 min the mixture was diluted with EtOAc (20 mL) and washed with M HCl (10 mL) and satd aq NaCl (10 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. To a solution of the residue in t-BuOH (1.5 mL), 2-methyl-2-butene (0.56 mL), and water (0.92 mL) were added NaH₂PO₄ (92 mg) and NaClO₂ (92 mg). The mixture was stirred overnight, when TLC (10:9:1 CH₂Cl₂-EtOAc-AcOH) showed a complete conversion of 40 into 41 (R_f 0.10). Then the mixture was concentrated, and a solution of the residue in water was washed with hexane, acidified with M HCl, and extracted with EtOAc (3×20 mL), and the organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography (3:2 CH₂Cl₂-EtOAc followed by 10:5:1 EtOAc-CH₂Cl₂-AcOH) of the residue yielded 41, isolated as a pure (NMR) syrup (56 mg, 86%); $[\alpha]_{D} + 9.5^{\circ}$ (c 1). ¹H NMR data $(1:1 \text{ CDCl}_3-\text{CD}_3\text{ OD}): \delta$ 1.849, 1.959, 2.077 (6 H) (3 s, 12 H, 4 Ac), 2.252, 2.304, 2.337, 2.396, and 2.413 (5 s, 15 H, 5 COC₆H₄CH₃), 3.672 (s, 3 H, C₆H₄OCH₃), 4.115 and 4.184 (2 d, 2 H, $J_{5',4'/5'',4''}$ 9.2 and 9.5 Hz, H-5',5'''), 4.342 and 4.682 (2 dd, 2 H, H-2,2"), 4.442 and 4.651 (2 d, 2 H, $J_{1',2' \neq 1'',2''}$ 7.7 and 8.1 Hz, H-1',1"'), 4.981 and 5.373 (2 d, 2 H, J_{1.2/1".2"} 8.1 and 8.8 Hz, H-1,1"), 5.056 and 5.194 (2 dd, 2 H, H-2',2"'), 6.647 (m, 4 H, C₆H₄OCH₃), 6.992, 7.014 (4 H), 7.062, 7.137, 7.320, 7.358, 7.535, 7.671, and 7.713 (9 d, 20 H, 5 COC₆H₄CH₃). A small amount of 41 was esterified with diazomethane in ether, and analysed by ¹H NMR: δ 1.852, 1.892, 2.064, and 2.091 (4 s, 12 H, 4 Ac), 2.241, 2.304, 2.332, 2.373, and 2.399 (5 s,

15 H, 5 $COC_6H_4CH_3$), 3.476 and 3.603 (2 s, 6 H, 2 $COOCH_3$), 3.663 (s, 3 H, $C_6H_4OCH_3$), 4.393 and 4.537 (2 d, 2 H, $J_{1',2'/1'',2''}$ 7.3 and 7.7 Hz, H-1',1''), 4.876 and 5.348 (2 d, 2 H, $J_{1,2/1'',2''}$ 8.1 and 8.4 Hz, H-1,1''), 6.632 (m, 4 H, $C_6H_4OCH_3$), 6.981, 6.997, 7.023, 7.055, 7.122, 7.345, 7.398, 7.564, 7.677, and 7.715 (10 d, 20 H, 5 $COC_6H_4CH_3$).

4-Methoxyphenyl O-(β -D-glucopyranosyluronic acid)- $(1 \rightarrow 3)$ -O-(2-acetamido-2deoxy- β -D-glucopyranosyl)- $(1 \rightarrow 4)$ -O-(β -D-glucopyranosyluronic acid)- $(1 \rightarrow 3)$ -2-acetamido-2-deoxy- β -D-glucopyranoside (10).—A solution of 41 (22 mg, 12 μ mol) in methanolic 40% methylamine (20 mL) was stirred for 4 days and then concentrated. A solution of the residue in methanolic 40% methylamine (20 mL) was stirred for another 4 days, and then the mixture was concentrated, and a solution of the residue in MeOH (2.5 mL) and Ac₂O (70 μ L) was stirred for 2 h at 0°C. Then TLC (4:2:2:1 *n*-BuOH-EtOH-water-AcOH) showed the formation of 10 (R_f 0.18). The mixture was concentrated and 1:1 MeOH-toluene (3 × 20 mL) was evaporated from the residue. Gel filtration on Sephadex G-10 (water) of the residue yielded 10, isolated after lyophilisation as a white, amorphous powder (9 mg, 82%); [α]_D - 19° (c 0.3, H₂O). ¹H NMR data (1:1 D₂O-CD₃OD): δ 2.004 and 2.015 (2 s, 6 H, 2 NHCOCH₃), 3.789 (s, 3 H, C₆H₄OCH₃), 4.444, 4.492, and 4.556 (3 d, 3 H, J_{1',2'/1",2"/1",2"} 7.9, 7.3, and 8.3 Hz, H-1',1",1"''), 5.025 (d, 1 H, J_{1,2} 8.6 Hz, H-1), 6.944 and 7.030 (2 d, 4 H, C₆H₄OCH₃). FABMS m/z 905 [M + Na]⁺.

ACKNOWLEDGMENTS

The research of Dr. T.M. Slaghek has been made possible by a fellowship of the Science and Technology Agency of Japan and by a fellowship of the Royal Netherlands Academy of Art and Sciences. The authors would like to thank Dr. J. Uzawa and Mrs. T. Chijimitsu for recording the NMR spectra, Mr. Y. Esumi and Mrs. A.C.H.T.M. van der Kerk-van Hoof for recording the FABMS spectra, and Ms. M. Yoshida and her staff for the elemental analyses.

REFERENCES

- 1 T.M. Slaghek, Y. Nakahara, and T. Ogawa, Tetrahedron Lett., 33 (1992) 4971-4974.
- 2 T.C. Laurent and J.R.E. Fraser, FASEB J., 6 (1992) 2397-2404.
- 3 K. Meyer, Fed. Proc., 17 (1958) 1075-1077.
- 4 P. Prehm, Biochem. J., 200 (1984) 597-600; P. Prehm, in D. Evered and J. Whelan (Eds.), The Biology of Hyaluronan, Ciba Foundation Symposium 143, Wiley, Chichester, UK, 1989, pp 21-40.
- 5 I. Ellis, A.M. Grey, A.M. Schor, and S.L. Schor, J. Cell. Sci., 102 (1992) 447-456.
- 6 B.A. Mast, J.H. Haynes, T.M. Krummel, R.F. Diegelmann, and I. Kelman-Cohen, *Plast. Reconst.* Surg., 89 (1992) 503-509.
- 7 N.S. Adzick and M.T. Longaker, Ann. Surg., 215 (1992) 3-7.
- 8 E.A. Turley, Cancer Met. Rev., 11 (1992) 21-30.
- 9 A. Aruffo, I. Stamenkovic, M. Melnick, C.B. Underhill, and B. Seed, Cell, 61 (1990) 1303-1313.
- 10 R.N. Feinberg and D.C. Beebe, Science, 220 (1983) 1177-1179.
- 11 D.C. West and S. Kumar, in D. Evered and J. Whelan (Eds.), The Biology of Hyaluronan, Ciba Foundation Symposium 143, Wiley, Chichester, UK, 1989, pp 187-207.

- 12 D.C. West, I.N. Hampson, F. Arnold, and S. Kumar, Science, 228 (1985) 1324-1326.
- 13 G. Grundler and R.R. Schmidt, Carbohydr. Res., 135 (1985) 203-218.
- 14 H.J. Koeners, J. Verhoeven, and J.H. van Boom, Recl. Trav. Chim. Pays-Bas, 100 (1981) 65-72.
- 15 K. Saigo, M.-H. Usui, K. Kikuchi, E. Shimada, and T. Mukaiyama, Bull. Chem. Soc. Jpn., 50 (1977) 1863-1866.
- 16 T. Fukuyama, A.A. Laird, and L.M. Hotchkiss, Tetrahedron Lett., 26 (1985) 6291-6292.
- 17 R.R. Schmidt, J. Michel, and M. Roos, Liebigs Ann. Chem., (1984) 1343-1357.
- 18 P. Boullanger, P. Chatelard, G. Descotes, M. Kloosterman, and J.H. van Boom, J. Carbohydr. Chem., 5 (1986) 541-559.
- 19 T. Nakano, Y. Ito, and T. Ogawa, Tetrahedron Lett., 31 (1990) 1597-1600.
- 20 J.H. van Boom and P.M.J. Burgers, Tetrahedron Lett., (1976) 4875-4878.
- 21 N. Jeker and C. Tamm, Helv. Chim. Acta, 71 (1988) 1895-1903.
- 22 K. Omura and D. Swern, Tetrahedron, 34 (1978) 1651-1660.
- 23 B.O. Lindgren and T. Nilsson, Acta Chem. Scand., 27 (1973) 888-890.
- 24 M.S. Motawia, J. Wengel, A.E.S. Abdel-Megid, and E.B. Pedersen, Synthesis, (1989) 384-387.
- 25 H. Kunz and H. Waldman, Angew. Chem., 96 (1984) 49-50.
- 26 Y. Hayakawa, H. Kato, M. Uchiyama, H. Kajino, and R. Noyori, *J. Org. Chem.*, 51 (1986) 2400-2402.