2002 Vol. 4, No. 13 2281–2283

Synthesis of L-Sugars from 4-Deoxypentenosides

Fabien P. Boulineau and Alexander Wei*

Department of Chemistry, Purdue University, 1393 Brown Building, West Lafayette, Indiana 47907-1393 alexwei@purdue.edu

Received May 11, 2002

ABSTRACT

$$\bigcap_{\mathsf{OBn}}^{\mathsf{O}} \bigcap_{\mathsf{OBn}}^{\mathsf{OR}} \longrightarrow \bigcap_{\mathsf{OBn}}^{\mathsf{Nu},\mathsf{OR}} \longrightarrow \bigcap_{\mathsf{OBn}}^{\mathsf{Nu},\mathsf{OR}} \bigcap_{$$

4-Deoxypentenosides, which are readily derived from D-sugars, resemble glycals in structure and reactivity and can undergo stereoselective epoxidation and $S_N 2$ nucleophilic addition to produce L-sugars in pyranosidic form.

L-Sugars, designated as such by the configuration of the stereogenic carbon most remote from the aldehydo/keto functionality,¹ have been a subject of enduring scientific interest. L-Sugars in their pyranosidic forms are important constituents of antibiotics² and clinically useful agents such as heparin;³ they have also demonstrated potential as noncaloric sweeteners⁴ and selectively toxic insecticides.⁵ Numerous synthetic approaches toward L-pyranosides have been reported, including de novo syntheses,⁶ homologation of shorter-chain sugars,⁷ and epimerization of readily available D-sugars.⁸ Most strategies involving the latter employ an acyclic intermediate to establish the C5 stereocenter, which often leads to a mixture of products upon cyclization.

Several groups have reported epimerization of the critical stereocenter without opening the pyranose ring,⁹ but overall, an efficient synthetic route to L-pyranosides has been lacking.

Here we introduce a direct and potentially general approach to L-pyranosides via 4-deoxypentenosides (4,5-unsaturated pentopyranosides). These unsaturated sugars bear a strong resemblance to glycals, a widely used intermediate in the synthesis of oligosaccharides¹⁰ and a variety of natural products. Indeed, the methodology reported herein suggests that 4-deoxypentenosides and glycals have similar reactivity profiles: both can be stereoselectively epoxidized by dimethyldioxirane (DMDO) and can react with carbon nucleophiles with inversion of configuration. We demonstrate this with a stereoselective, two-step synthesis of L-altropyranoside derivatives bearing a diverse range of functional groups at C5.

⁽¹⁾ McNaught, A. D. Pur. Appl. Chem. 1996, 68, 1919-2008.

⁽²⁾ Collins, P. M. Dictionary of Carbohydrates; Chapman and Hall: London, 1987.

⁽³⁾ Heparin—Chemical and Biological Properties; Clinical Applications; Lane, D. A., Lindahl, U., Eds.; Edward Arnold: London, 1989.

^{(4) (}a) Shallenberger, R. S.; Acree, T. E.; Lee, C. Y. *Nature* **1969**, *221*, 555–56. (b) Levin, G. V. U.S. Patent 4,262,032, 1981.

^{(5) (}a) Levin, G. V.; Zehner, L. R. U.S. Patent 5,166,193, 1992. (b) Anzeveno, P. B.; Green, F. R., III. In *Synthesis and Chemistry of Agrochemicals, VI*; Baker, D. R., Fenyes, J. G., Lahm, G. P., Selby, T. P., Stevenson, T. M., Eds.; ACS Symposium Series 800; American Chemical Society: Washington, DC, 2002; pp 262–76.

⁽⁶⁾ Examples of de novo syntheses: (a) Ko, S. Y.; Lee, A. W. M.; Masamune, S.; Reed, L. A.; Sharpless, K. B.; Walker, F. J. *Science* **1983**, 220, 949–51. (b) Bednarski, M.; Danishefsky, S. *J. Am. Chem. Soc.* **1986**, 108, 7060–67. (c) Takeuchi, M.; Taniguchi, T.; Ogasawara, K. *Synthesis* **1999**, 341–46.

⁽⁷⁾ Examples of homologation: (a) Sowden, J. C.; Fischer, H. O. *J. Am. Chem. Soc.* **1945**, 67, 1713–15. (b) Kuhn, R.; Klesse, P. *Chem. Ber.* **1958**, 91, 1989–91. (c) Dondoni, A.; Marra, A.; Massi, A. *J. Org. Chem.* **1997**, 62, 6261–67. (d) Takahashi, S.; Kuzuhara, H. *J. Chem. Soc. Perk. Trans.* **1 1997**, 607–12. (e) Lubineau, A.; Gavard, O.; Alais, J.; Bonnaffé, D. *Tetrahedron Lett.* **2000**, 41, 307–11.

⁽⁸⁾ Examples of C5 epimerization: (a) Blanc-Muesser, M.; Defaye, J. Synthesis 1977, 568–69. (b) Jacquinet, J.-C.; Petitou, M.; Duchaussoy, P.; Lederman, I.; Choay, J.; Torri, G.; Sinay, P. Carbohydr. Res. 1984, 130, 221–41. (c) Ojeda, R.; de Paz, J. L.; Martín-Lomas, M.; Lassaletta, J. M. Synlett 1999, 8, 1316–18. (d) Takahashi, H.; Hitomi, Y.; Iwai, Y.; Ikegami, S. J. Am. Chem. Soc. 2000, 122, 2995–3000.

^{(9) (}a) Pegram, J. J.; Anderson, C. B. *Carbohydr. Res.* **1988**, *184*, 276–78. (b) Rochepeau-Jobron, L.; Jacquinet, J.-C. *Carbohydr. Res.* **1997**, *303*, 395–406. (c) Bazin, H. G.; Wolff, M. W.; Linhardt, R. J. *J. Org. Chem.* **1999**, *64*, 144–52.

^{(10) (}a) Halcomb, R. L.; Danishefsky, S. J. *J. Am. Chem. Soc.* **1989**, *111*, 6661–66. (b) Seeberger, P. H.; Bilodeau, M. T.; Danishefsky, S. J. *Aldrichimica Acta* **1997**, *30*, 75–92.

⁽¹¹⁾ Selected examples: (a) Aicher, T. D.; Buszek, K. R.; Fang, F. G.; Forsyth, C. J.; Jung, S. H.; Kishi, Y.; Scola, P. M. *Tetrahedron Lett.* **1992**, *33*, 1549–52. (b) Hayward, M. M.; Roth, R. M.; Duffy, K. J.; Dalko, P. I.; Stevens, K. L.; Guo, J.; Kishi, Y. *Angew. Chem., Int. Ed.* **1998**, *37*, 192–96. (c) Evans, D. A.; Trotter, B. W.; Côté, B. *Tetrahedron Lett.* **1998**, *39*, 1709–12. (d) Rainier, J. D.; Allwein, S. P. *J. Org. Chem.* **1998**, *63*, 5310–11.

Scheme 1a

^a Reaction conditions: (a) (i) TEMPO (5 mol %), KBr (10 mol %), *n*-Bu₄NBr (5 mol %), NaOCl, NaHCO₃, CH₂Cl₂/H₂O, 0 °C; (ii) *N*,*N*-dimethylformamide dineopentyl acetal (5 equiv), toluene, 120 °C (70% overall yield). (b) 0.1 M DMDO in acetone, CH₂Cl₂, −55 °C (quantitative yield).

4-Deoxypentenoside **1** was prepared from the corresponding methyl α -D-glucoside in 70% yield by a two-step oxidation—decarboxylative elimination, modified from a procedure reported by Zemlicka and co-workers (see Scheme 1). Several methods for epoxidation were investigated; however, the sensitivity of the resulting 4,5-epoxypyranosides to acidic hydrolysis precluded purification by silica chromatography, placing considerable limitations on the choice of reagents and reaction media (see Table 1 for selected

Table 1. Selected Epoxidation Conditions for 4-Deoxypentenoside **1**

condition ²	β : α selectivity	
MMPP, NaHCO ₃ , CH ₂ Cl ₂ , rt	NR	
m-CPBA, NaHCO ₃ , CH ₂ Cl ₂ /H ₂ O, 0 °C	2:1	
CF ₃ C(OO)Me/trifluoroacetone, CH ₂ Cl ₂ , -78 °C	5:1	
DMDO/acetone, CH ₂ Cl ₂ , -20 °C (4 h)	5:1	
DMDO/acetone, CH ₂ Cl ₂ , -55 °C (48 h)	10:1	

 a MMPP = magnesium monoperoxyphthalate; m-CPBA = m-chloroperoxybenzoic acid; DMDO = 2,2-dimethyldioxirane.

conditions). Nevertheless, we observed that epoxidation of 1 with DMDO at $-55~^{\circ}\text{C}$ proceeded quantitatively with β : α selectivities of approximately 10:1, as determined by ^{1}H NMR spectroscopy (300 MHz, $C_{6}D_{6}$) and the ensuing product ratios (see below). Epoxidation stereoselectivity was strongly affected by the transannular substituents, which can influence both the pentenoside ring conformation and the local steric environment; for example, epimerization at C1 or C2 resulted in high selectivity for the α face (see Table 2). 13

Table 2. Substituent Effects on 4-Deoxypentenoside Epoxidation

configuration		β : α selectivity	
	α-methyl gluco (1)	10:1 ^a	
	α-isopropyl gluco	8:1 ^a	
	β -isopropyl gluco	$1:5^{b}$	
	α-methyl manno	>1.20b	

 a DMDO (0.1 M) in acetone/CH2Cl2, $-55\,$ °C. b DMDO (0.1 M) in acetone/CH2Cl2, 0 °C.

Table 3. Nucleophilic Ring-Opening of β -Epoxide 2

	2 (10:1 β:α)	3a-j (major product)		
entry	nucleophile	react cond	l product	yield
а	¹³ CH ₃ MgI	A	H ₃ ¹³ C _, O OMe HOODEN	57% ^b
b	∕∕MgBr	В	HO OBn	78% ^c
С	 Mg Cl	В	HO OBn	70% ^b
d	MgBr	В	HO OBn	52% ^b
е	PhMe ₂ Si MgCl	В	hMe ₂ Si ,,,,OMe HOODI OBn	86% ^b
f	MgBr	A	Ph.,,OMe HO OBn	69% ^c
g	KCN	С	NC.,,OMe HOOMOBN	68% ^b
h	NaN ₃	С	N ₃ ,,,OMe HOOMOBN	77% ^b
i	4-MePhSLi	D	TolS,,,OMe HOOMOBn OBn	72% ^c
j	LiAID4	E	D.,,OMe HOOMOBN	69% ^c

 $[^]a$ Reaction conditions: (A) 3.5 equiv of Nu, 1.5 equiv of CuI, THF, $-10\,^{\circ}\text{C}$. (B) 3.5 equiv of Nu, 0.1 equiv of CuI, THF, $-10\,^{\circ}\text{C}$. (C) 10-20 equiv of Nu in aq DMF, rt. (D) 9.0 equiv of Nu in THF, 0°C. (E) 5.0 equiv of Nu in Et₂O, rt. b Mixture of diastereomers = 10:1 L-altro/p-gluco. c Isolated yield.

2282 Org. Lett., Vol. 4, No. 13, 2002

Epoxypyranoside 2 was evaluated for its reactivity under S_N 2 conditions with a broad set of nucleophiles. β -Epoxide ring-opening was observed to proceed in many cases with complete regioselectivity and inversion of stereochemistry at C5, producing the corresponding L-altro derivatives as the major products (see Table 3).14,15 In particular, Cu(I)-assisted Grignard additions proceeded with both high yields and stereocontrol.¹⁶ Similar nucleophiles have been reported to react with α-epoxyglycals and related intermediates with inversion of configuration at C1.11b-d,17 Heteroatomic nucleophiles were also observed to add in an S_N2 fashion, yielding novel 1,5-bisacetals. It should be noted that several of the products in Table 3 can be readily converted to genuine L-hexopyranosides; for example, a Tamao-Fleming oxidation¹⁸ on dimethylphenylsilane **3e** yields L-altropyranoside 4 in 75% yield (see Scheme 2).

The 4-deoxypentenoside route toward L-sugars offers some distinct advantages over other synthetic methods: (i) it can

Scheme 2

be used to install both natural and unnatural substituents at C5; (ii) it is an efficient method for introducing isotopic labels and can be used to prepare 6-[\(^{13}\C)\]-hexopyranosides;\(^{19}\) and (iii) it provides direct access to protected L-pyranosides with fixed anomeric configurations and may be adapted directly toward the construction of 1,4-linked saccharides such as the glycosaminoglycans. We anticipate that 4-deoxypentenosides will also be useful as synthetic intermediates toward higher-order or exotic sugars and other complex tetrahydropyrans.\(^{11}\)

Acknowledgment. The authors gratefully acknowledge support from the American Cancer Society (IRG-58-006-41), the American Chemical Society Petroleum Research Fund (36069-AC1), and the American Heart Association Midwest Affiliates (30399Z).

Supporting Information Available: Experimental procedures for the synthesis of compounds **1–4**, plus selected ¹H and ¹³C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

OL026175O

Org. Lett., Vol. 4, No. 13, 2002

⁽¹²⁾ Philips, K. D.; Zemlicka, J.; Horwitz, J. P. Carbohydr. Res. 1973, 30, 281–86.

⁽¹³⁾ Transannular stereoelectronic effects on reactions involving tetrahydropyran ring systems have been noted previously: Romero, J. A. C.; Tabacco, S. A.; Woerpel, K. A. *J. Am. Chem. Soc.* **2000**, *122*, 168–69 and references therein.

⁽¹⁴⁾ The product of entry i is formally a 5S-[2H]-L-arabinoside. It should be mentioned that additions to the minor α -epoxide isomer also proceeded with inversion at C5 to yield the corresponding D-gluco derivatives.

⁽¹⁵⁾ Stereochemistry was assigned on the basis of ¹H NMR coupling constants of both the major and minor stereoisomers, supplemented by nuclear Overhauser effect experiments (see Supporting Information).

nuclear Overhauser effect experiments (see Supporting Information). (16) Erdik, E. *Tetrahedron* **1984**, *40*, 641–57. We have observed that Grignard additions without Cu(I) did not add exclusively by the $S_{\rm N}2$ pathway.

^{(17) (}a) Bellosta, V.; Czernecki, S. *J. Chem. Soc., Chem. Commun.* **1989**, 199–200. (b) Bellosta, V.; Czernecki, S. *Carbohydr. Res.* **1993**, 244, 275–84. (c) Best, W. M.; Ferro, V.; Harle, J.; Stick, R. V.; Tilbrook, D. M. G. *Aust. J. Chem.* **1997**, 50, 463–72. (d) Chiappe, C.; Crotti, P.; Menichetti, E.; Pineschi, M. *Tetrahedron: Asymmetry* **1998**, 9, 4079–88.

⁽¹⁸⁾ Fleming, I.; Sanderson, P. E. J. *Tetrahedron Lett.* **1987**, 28, 4229–32.

⁽¹⁹⁾ King-Morris, M. J.; Bondo, P. B.; Mrowca, R. A.; Serianni, A. S. *Carbohydr. Res.* **1988**, *175*, 49–58.