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A new one-step reaction has been developed for converting 4-azido-4-deoxy-p-galactoside into 4-deoxy-p-erythro-hexos-3-ulose by
phosphoramidites and tetrazole. It is proposed that the new reaction proceeds via an intramolecular Staudinger reaction of the phosphite
intermediate and a tetrazole-catalyzed elimination reaction of the resultant phosphorimidate. Tetrazole appears to be playing a unique role by
acting as a bifunctional catalyst to facilitate the elimination reaction.

Various derivatives of 4-deoxy-erythro-hexos-3-ulosel() oxidizing the hydroxyl group of methyl 4-azido-2,6-G-
are useful intermediates for the chemical synthesis of naturalbenzyl-4-deoxya-p-galactopyranoside4] in one step to
and unnatural carbohydrate mimeticsand natural products  afford the synthetic target The mild conditions of this new

such as amipurimycfn® and miharamyciri:¥2 Compoundl reaction can circumvent one of the potential problems of
and related species have traditionally been prepared by theketosugar synthesis, i.e., enolization (under both acidic and
oxidation and deoxygenation of sugat®r by the Diels- basic conditions) and the resulting side reactions.

Alder reaction of aldehydes and dierféslhis paper reports
a novel method for preparing a protected forniphamely, 0Bn

X / OH HO Na _oBn
methyl 2,6-diO-benzyl-4-deoxye-pD-erythro-hexopyranosid- %OH % HO 0 o Q
3-ulose ), from methyla-p-glucopyranosided). A new o & B0 be HO—— N

reaction has been invented for removing the azido group and 1 2 3 OMe 4 OMe
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less than 5 min). Whilel1A—C converted into keton@
smoothly within 5-12 h, the conversion df1E into ketone
2 was much less efficient;1D, on the other hand, remained

Scheme 2
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reaction in the products and yields (%)
entry presence of 2 14 15 16 17 18
1 - (neutral) - 15 75 - - -
2 pyridine (2 eq.) - 10 80 - - -
3 DBU (5 eq.) - 10 - 73 - -
4 AcOH (5 eq.) 3% 15 - 20 M1
5 tetrazole (5eq.) 70 3 18 - - -

a A small amount was observed by TLC.

It is a reaction that is accompanied by-8 bond fission
probably through a phosphorimidate or phosphoramidate
intermediate, a reaction that has never been observed
previously. In fact, phosphazo compounds usually undergo
Arbusov-type dealkylation by breaking of one of the-O
bonds?*

These results differ from those of the literatd$é/which
report that the reactions between 2-azido alcohols and
phosphites give aziridines as the major products. The
literature also suggests that fission of a@Q bond and
formation of a C-N bond occur concurrently. A major

almost unchanged for more than 2 days. For this transforma-difference between our reaction and those of the literature

tion, only reagent§ 0A—C were of practical value, withOC
being the most readily available reagent.
The initial formation ofl1implied that an intramolecular

is that we utilized phosphorimidates, rather than phosphites,
with tetrazole as the catalyst.

To probe the role of the tetrazole Kp 4.70)25 we

Staudinger reaction was occurring at a later step. Thoughsubstituted it with a simple acid, i.e., acetic aci&{@.75).
many Staudinger-type reactions have been devised andt transpired that under these conditions there was almost

widely used in organic synthesi5;?? to the best of our

no reaction betweed and 10C (3 days), which indicated

knowledge there have been very few examples of the that tetrazole was not simply serving as an acid.
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We also studied the reaction betweérand trimethyl
phosphite, which we expected would first react with the azide
rather than the hydroxyl group. As expected, the neutral
reaction gave phosphoramiddteas the major product (entry
1, Scheme 4) as well as a significant amount of a cyclo-
phosphoramidaté4. Similar results were observed (entries
2 and 3) under basic conditions; however, a hydrolysis
product of 15, namely16, was obtained when DBU was
employed. When acetic acid was included (entry 4), the
reaction was complex and affordéd, 15, 17, and18 and
only a small amount of. It was only when the tetrazole
was employed th&t was obtained as the major product (entry
5).

Our studies have proven that tetrazole has a special
influence on the reaction course. Moreover, because the
acidity of tetrazole is almost the same as that of acetic acid,
this showed that tetrazole must not merely be acting as a
simple acidic catalyst. Tetrazole is a unique acid, as it

Org. Lett., Vol. 6, No. 9, 2004



possesses three quite basic nitrogen atoms. Because of thigs a stable intermediate. In the caselOE, since a methyl
we propose that tetrazole is acting as a bifunctional catalystgroup is small, the reactivity ofOE is increased, and the
with one of its nitrogen atoms behaving as a nucleophile; it intermolecular reaction to forrd3 becomes competitive. As
facilitates the concerted process of elimination. Bifunctional a result, besides the pathway to prod@&ea protonation

catalysis is frequently observed in biological systefs. and dealkylation process (path a) can give rise to a significant
Interestingly, neither the acyclic phosphoramidibenor amount ofl3. Meanwhile, elimination reaction followed by

the cyclophosphoramidatst transformed ta2 upon treat- electrophilic addition of tetrazole to the resultant vinyl ether

ment with tetrazole, acetic acid, or triethylamine. Instead, 25 can lead tal2 (path b).

they gave rise to the dealkylation prodd& No conversion For Scheme 2, as trimethyl phosphite does not react with

of 15into 14 was observed either. These results suggest thatalcohols, the Staudinger reaction must be happening first
the engaged reactive intermediates are not phosphoramidategScheme 4). In entries-13, 26 is probably reacting through
a conclusion that is consistent with the literattfé®

Therefore, this reaction might have involved reactive phos- _

phazo intermediates such as phosphazides or phosphor-

. . Scheme 4
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i i i 2N\
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phosphorimidat@0 is rate-limiting. Phosphorimidates nor- L H OMe
mally experience Arbusov-type dealkylation to produce @ 32

phosphoramidate8,but under the influence of tetrazole, a
bifunctional catalyst, a concerted elimination reaction occurs
through?21 to give an enoR2 and its tautomeR. For 10D, elimination of a nitrogen molecule to give an imids&
probably because of steric hindrance, the intramolecular (path a). However, in the presence of acid (entry 4)
Staudinger reaction is extremely slow, ahtD is isolated protonation of26 might be taking place to form a phos-
phonium intermediat@9 (path b). Producil5 is probably

(23) Tikhonina, N. A.; Gilyarov, V. A.; Kabachnik, M. Zh. Obshch. _ i
Khim. 1978 48 44-50. formed by the Arbusov-type dealkylation @i (path ¢). On

(24) Bhattacharka, A. K.; Thyagarajan, Ghem. Re. 1981, 81, 415 the other hand, intramolecular proton transfer, cyclization,
430. , and dealkylation (path d) most probably give riseli4

gg; E%@?'&MAA&.J'C%an'T"R'Z%?%afcl)gé_gl%%_lg“& Similarly, cyclization and deprotonation @8 followed by

(27) Rony, P. RJ. Am. Chem. Sod.969 91, 6090-6096. dealkylation of30 more than likely produces the cyclo-
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phosphazidd.7. Under the influence of tetrazole, however,
a concerted process (shown3f) is probably favored and
an elimination reaction afford2. Alternatively, 2 can be
formed via the phosphorimida®?, mediated by tetrazole
as shown for32.

The proposed reaction mechanism fBrrequires an
antiperiplanar orientation of the azido group relative to the
departing proton. In agreement with this, the flexible 1-azido-
3-octadecanoxy-propan-2-ol and an analogud wofith an

zole. Judging by our results, this reaction looks rather like a
pinacol-type rearrangemetiteven though their mechanisms
are different. To the best of our knowledge, there has been
no report of the direct conversion of a 2-azido alcohol to a
ketone, despite the fact that many variations of pinacol
rearrangement, e.g., Demjafidand Tiffeneat-Demjanov!
rearrangements of amino alcohols, have been established.
We have also highlighted the unique impact that tetrazole
can have on the Staudinger reactionldfand subsequent

equatorial azido group did not form the corresponding ketone transformations. To explain why other simple acids or bases

products.

cannot be used to replace tetrazole, we have proposed that

As a further testament to the unique properties of tetrazole it might be acting as a bifunctional catalyst, promoting a
in the proposed mechanism, we also examined the reactionconcerted reaction process. This is somewhat supported by
between trimethyl phosphite and the fully protected analogue the findings that, in addition to being an acidic catalyst,
33 of pb-galactose under various conditions (Scheme 5). The tetrazole is also a good nucleophile, enabling the formation

Scheme 5
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reaction in the products and yields (%)
entry presence of 34 35 36 37
6 - (neutral) 70 - -
7 AcOH (5 eq.) 63 - - -
8 tetrazole (5eq.) 20 11 23 17

of reactive phosphorus tetrazolide intermediates during
nucleotide synthesi&3* However, in the literature it is not
clear how tetrazolides are formed. Our results now provide
some hints in regard to this issue.

Because the Staudinger reaction involves several steps and
intermediated! its reaction pathways and outcomes can be
easily affected by many factof3.as shown by our results
as well as those in the literatute!®?'The reactions between
phosphoramidites and other 2-azido alcohols are currently
under further investigations, and the results will be reported
in due course.
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