

Tetrahedron Letters 41 (2000) 1187-1189

TETRAHEDRON LETTERS

A concise synthesis of C-glycosyl phosphate and phosphonate analogues of N-acetyl- α -D-glucosamine 1-phosphate

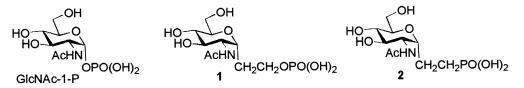
Olivier Gaurat, Juan Xie * and Jean-Marc Valéry

Laboratoire de Chimie des Glucides, Université Pierre et Marie Curie et CNRS, 4 place Jussieu, 75005 Paris, France

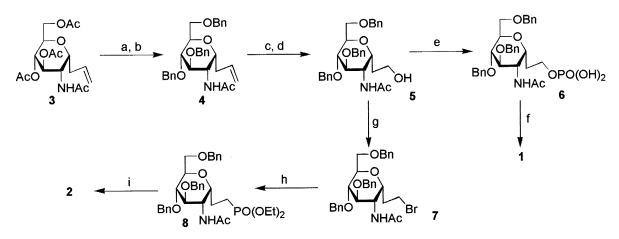
Received 9 November 1999; accepted 6 December 1999

Abstract

An easy preparation of the C-glycosyl phosphate and phosphonate analogues of N-acetyl- α -D-glucosamine 1-phosphate is described. The readily available 3-(2'-acetamido-3',4',6'-tri-O-acetyl-2'-deoxy- α -D-glucopyranosyl)-1-propene **3** has been used as a common intermediate. © 2000 Elsevier Science Ltd. All rights reserved.


Keywords: glycosyl phosphates; C-glycosyl phosphate; C-glycosyl phosphonate; amino C-glycosides.

Glycosyl phosphates are the main metabolic precursors and the key glycosylating agents in the biosynthesis of glycoconjugates. Recently, the synthesis of hydrolytically stable *C*-glycosidic analogues of glycosyl phosphates has attracted increasing attention because of the biological importance of these phosphates.¹


Among the anomeric sugar phosphates, the *N*-acetyl- α -D-glucosamine 1-phosphate (GlcNAc-1-P) is of particular interest. It is known to be the key intermediate in the biosynthesis of *N*-linked glycoproteins, and also the metabolic precursor of the bacterial cell-wall components teichoic acid and mureine. Despite its important biological implication, only two synthetic analogues of GlcNAc-1-P have been reported. Nicotra and co-workers synthesised the phosphonate isostere with a multi-step sequence by introducing the amino function at the end of synthesis because of the difficulty encountered during the preparation of the corresponding amino *C*-glycosyl halides and their subsequent conversion to phosphonate.² Junker and Fessner prepared the diethyl 2-(3',4',6'-tri-*O*-acetyl-2'-deoxy-2'-trifluoroacetamido- α -Dglucopyranosyl)ethane phosphonate by radical promoted C–C bond formation between diethyl vinylphosphonate and the corresponding glycosyl bromide, in 44% yield.³ We are interested in the modification of GlcNAc-1-P and we describe here a new approach to the synthesis of related, homologous *C*-ethylene phosphotate sugars **1** and **2**.

^{*} Corresponding author. Fax: 33-1-44-27-55-13; e-mail: xie@ccr.jussieu.fr (J. Xie)

^{0040-4039/00/\$ -} see front matter © 2000 Elsevier Science Ltd. All rights reserved. P11: S0040-4039(99)02277-7

Our strategy was to proceed from the known $3-(2'-\text{acetamido}-3',4',6-\text{tri-}O-\text{acetyl}-2'-\text{deoxy}-\alpha-D-glucopyranosyl)-1-propene <math>3^{4,5}$ as shown in Scheme 1. The acetyl protecting group in 3 was first transformed into benzyl ether thus affording compound 4. Oxidation (OsO₄/NaIO₄) of the allyl function, followed by reduction of the so-obtained aldehyde then furnished alcohol 5 in good yield. Reaction of 5 with POCl₃⁶ afforded the protected phosphate 6. Removal of benzyl ether was realised by catalytic hydrogenolysis, leading to the desired *C*-glycopyranosyl phosphate 1^7 in excellent yield.

Scheme 1. *Reagents and conditions:* (a) MeONa, MeOH, 0° C to rt; (b) NaH, BnBr, DMF, 94% for two steps; (c) OsO₄, NaIO₄, THF/H₂O, quant.; (d) NaBH₄, CH₂Cl₂/MeOH, 75%; (e) POCl₃, THF, Ar, 0° C to rt, then H₂O, 93%; (f) H₂, Pd/C, MeOH, AcOH cat. quant.; (g) CBr₄, PPh₃, CH₂Cl₂, quant.; (h) P(OEt)₃, 120°C, 91%; (i) TMSI, CCl₄, 0° C to rt, quant.

Synthesis of the phosphonate analogue was achieved by conversion of alcohol **5** into bromide **7** with CBr₄/PPh₃. The Arbuzov reaction with P(OEt)₃ afforded **8** in 91% yield. Finally, treatment of **8** with Me₃SiI (20 equiv. in CCl₄) led to the expected phosphonate **2**.⁷

In conclusion, the preparation of *C*-glycosyl phosphate and phosphonate analogues of GlcNAc-1-P could be efficiently accomplished from the readily available α -*C*-allyl glycoside of *N*-acetyl Dglucosamine **3**. Compounds **1** and **2** are versatile intermediates for the synthesis of inhibitors of *N*-acetyl glycosaminyl transferases and might themselves exhibit inhibition towards these enzymes. Biological evaluation of these new compounds towards various glycosyltransferases and further elaboration are under way.

Acknowledgements

We gratefully thank the Ministère de l'Enseignement Superieur et de la Recherche (MESR) for a grant to O.G., and CNRS (Program 'Physique et Chimie du vivant') for financial support.

References

- 1. Nicotra, F. In *Carbohydrate Mimics: Concepts and Methods*; Chapleur, Y., Ed.; Wiley-VCH: Weinheim, Chichester, 1998; pp. 67–85.
- 2. Casero, F.; Cipolla, L.; Lay, L.; Nicotra, F.; Panza, L.; Russo, G. J. Org. Chem. 1996, 61, 3428-3432.
- 3. Junker, H. D.; Fessner, W. D. Tetrahedron Lett. 1998, 39, 269-272.
- 4. Roe, B. A.; Boojamra, C. G.; Griggs, J. L.; Bertozzi, C. R. J. Org. Chem. 1996, 61, 6442-6445.
- 5. Cui, J.; Horton, D. Carbohydr. Res. 1998, 309, 319-330.
- 6. Tener, G. M. J. Am. Chem. Soc. 1961, 83, 159-168.
- 7. Selected physical data: Compound **1**, ¹H NMR (250 MHz, D₂O) δ =4.20 (ddd, 1H, *J*=11.5, 5.7 and 3.5 Hz, H-1'), 3.95 (m, 3H, H-1, H-2'), 3.82 (dd, 1H, *J*=12.0 and 2.1 Hz, H-6'), 3.71 (dd, 1H, *J*=12.0 and 5.0 Hz, H-6''), 3.70 (t, 1H, *J*=9.1 Hz, H-3'), 3.55 (ddd, 1H, *J*=9.1, 5.0 and 2.1 Hz, H-5'), 3.40 (t, 1H, *J*=9.1 Hz, H-4'), 3.05 (m, 1H, H-2), 2.00 (s, 3H, Me), 1.85 (m, 1H, H-2); ³¹P NMR (202.46 MHz, D₂O) δ =2.82. Compound **2**, ¹H NMR (250 MHz, D₂O) δ =4.05 (m, 1H, H-1'), 3.95 (m, 1H, H-2'), 3.84 (dd, 1H, *J*=12.0 and 1.8 Hz, H-6'), 3.71 (t, 1H, *J*=9.0 Hz, H-3'), 3.69 (dd, 1H, *J*=12.0 and 5.0 Hz, H-6''), 3.47 (ddd, 1H, *J*=9.0, 5.0 and 1.8 Hz, H-5'), 3.36 (t, 1H, *J*=9.0 Hz, H-4'), 1.91 (s, 3H, Me), 1.80 (m, 2H, H-2), 1.65 (m, 2H, H-1); ³¹P NMR (202.46 MHz, D₂O) δ =32.04.