Synthesis of a Malimide Analogue of the Telomerase Inhibitor UCS1025A Using a Dianionic Aldol Strategy

Renata Marcia de Figueiredo,^a Matthias Voith,^a Roland Fröhlich,^b Mathias Christmann*^a

^a Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074, Aachen, Germany Fax +49(241)8092127; E-mail: christmann@oc.rwth-aachen.de

^b Institute of Organic Chemistry, University of Münster, Corrensstraße 40, 48149 Münster, Germany *Received 20 November 2006*

Abstract: The synthesis of a simplified analogue of UCS1025A via an aldol coupling is described.

Key words: aldol reactions, Diels–Alder reactions, imides, natural products, total synthesis

Telomeres¹ are repetitive hexameric DNA sequences (TTAGGG)_n at the ends of the chromosomes, which protect the chromosomal ends of DNA from being recognized as double-strand DNA breaks. In most somatic cells, telomeres also act as a cellular clock, as they shorten each time a cell divides until a critical length is reached and cell senescence or apoptosis occur. In over 90% of all cancer cells the enzyme telomerase² is activated which makes them virtually immortal. During the course of a screening program, Yamashita et al. isolated a new fungal metabolite from Acremonium sp. KY4917. Apart from its antimicrobial activity against Gram-positive bacteria, UCS1025A (1) was identified to be a novel telomerase inhibitor.³ UCS1025A possesses a complex pentacyclic framework featuring a contiguous array of eight stereocenters and an unprecedented furopyrrolizidine subunit (Figure 1). Since 1 is one of the first natural product telomerase inhibitors,⁴ many research groups⁵ have embarked on its synthesis and very recently, Danishefsky⁶ and Hoye⁷ reported elegant total syntheses. In this communication, we present the synthesis of a malimide analogue (2) of UCS1025A.

Figure 1 UCS1025A (1) and a malimide analogue (2)

In our retrosynthetic plan, an aldol scission between the keto group and the pyrrolizidine residue would provide access to UCS1025A and analogues. In fact, Lambert and Danishefsky were not able to couple the decalin fragment

SYNLETT 2007, No. 3, pp 0391–0394 Advanced online publication: 07.02.2007 DOI: 10.1055/s-2007-968000; Art ID: G35506ST © Georg Thieme Verlag Stuttgart · New York with a model pyrrolizidine using an aldol approach because of steric reasons. This strategy is also hampered by the fact that protection of the β -hydroxyl group on the pyrrolizidine is prohibited due to facile β-elimination under basic conditions. We wanted to overcome this problem (Scheme 1) by deprotonation of the free hydroxyl group prior to the enolate formation (to form dianion 5). From alkylation⁸ and aldol reactions⁹ of 4-hydroxypyrrolidin-2-ones, it was anticipated that malimide-derived enolates (4-hydroxypyrrolidine-2,5-diones) would be attacked with high facial selectivity as compared to the oxyanion¹⁰ but with low diastereoselectivity with respect to the newly formed hydroxyl group. The selectivity was inconsequential to our strategy, since we oxidized this hydroxyl group later and the keto group was in equilibrium with its enol tautomer.

Scheme 1 Retrosynthetic strategy

We started our synthetic studies toward UCS1025A using imide 6 and cyclohexyl carbaldehyde (7) as model substrates (Scheme 2).

Scheme 2 Synthesis of 10. *Reagents and conditions*: (a) NaHMDS, THF, 0 $^{\circ}$ C, then –78 $^{\circ}$ C, cyclohexyl carbaldehyde (7), 3.5 h, 56%; (b) TBSCl, imidazole, DMF, r.t., 1 h, 84%; (c) Dess–Martin periodinane, CH₂Cl₂, 0 $^{\circ}$ C to r.t., 2 h, 82%.

After some optimization¹¹ we found that 2.1 equivalents of NaHMDS as base in THF gave rise to the desired products $8a^{12}$ and 8b in 56% yield as a 55:45 mixture of diastereomers. For the major isomer 8a the crystal structure was obtained (Figure 2), and the relative configuration of 8b was determined by comparison of the NMR spectra.

Figure 2 X-ray crystal structure of 8a

As precedented by the Procter group for a similar substrate,¹³ the ring hydroxyl group could be protected selectively over the side-chain hydroxyl (imidazole, TBSCI) giving **9** in 84% yield. A screening of oxidizing agents revealed that pyridinium chlorochromate (PCC), manganese dioxide or employing Swern conditions¹⁴ led to rapid decomposition of the starting material. Using the Dess-Martin periodinane,¹⁵ the reaction proceeded smoothly to give the desired β -ketoimide **10**. When the less bulky aldehydes 2-hexenal and 2,8,10-dodecatrienal were employed in the aldol coupling reaction, the yield could be raised to 65% and 72%, respectively (Scheme 3).

Scheme 3 Synthesis of 15 and 16. *Reagents and conditions*: (a) NaHMDS, THF, 0 °C, then -78 °C, 2-hexenal (11) or 2,8,10-dodeca-trienal (12), 3.5 h, 65% and 72%, respectively; (b) TBSCl, imidazole, DMF, r.t., 1 h, 77% and 79%; (c) PCC, 4 Å MS, CH₂Cl₂, r.t., 2 h, 76% and 55%.

The aldol products were converted into the corresponding β -ketoimides **15** and **16** as substrates for inter- and intramolecular Diels–Alder reactions. This time PCC was the superior oxidant. Interestingly, both compounds exist as a 1:1 tautomeric mixture as indicated in Scheme 2. Unfortunately, so far all attempts to generate Diels–Alder products (heat, Lewis acids, hexafluoroisopropanol¹⁶)

Scheme 4 Synthesis of 17

have led to either decomposition of starting materials or a complex mixture of products.

One of the reasons behind the decomposition could be the facile β -elimination of TBS-OH giving rise to a highly reactive double dienophile, which was trapped with cyclopentadiene. In fact, the double Diels–Alder adduct **17** was isolated as a 3:1 mixture of diastereomers (Scheme 4).

Scheme 5 Synthesis of **21**. *Reagents and conditions*: (a) *t*-BuOK, **19**, 0 °C, then **15**, 1 h, then 10% aq oxalic acid, r.t., 91% yield; (b) **20** (10 mol%), 0 °C, MeNO₂–H₂O (98:2), 48 h, 74%; (c) NaBH₄, EtOH, 0 °C, quant., recrystallization (pentane); (d) PCC, 4 Å MS, CH₂Cl₂, r.t., 0.5 h, 95%.

We therefore decided to perform the Diels-Alder reaction prior to the aldol coupling. Aldehyde 18¹⁷ was treated with the commercially available Wittig reagent 19, to give the desired trienal 12 in 91% yield (Scheme 5). This compound was subjected to an organocatalytic Diels-Alder reaction using MacMillan's conditions.¹⁸ We could lower the catalyst loading to 10 mol% by choosing nitromethane as the solvent and obtained the Diels-Alder adduct in 74% yield and 84% ee. The ee was raised to >99% by recrystallization of the corresponding alcohol followed by reoxidation to afford the enantiopure aldehyde **21**.¹⁹ This material was coupled to the imide 6 using the previously established conditions to give 23 as a 4:1 mixture of diastereomers. The reaction was more sluggish, confirming the tendency that increasing the size of the electrophile lowers the reaction rate. The product was obtained as a diastereomeric mixture in 55% yield. The major isomer was taken forward to give, after protection and oxidation, the desired analogue 2^{20} of UCS1025A as a mixture of tautomers (Scheme 6).

Scheme 6 Synthesis of 2. *Reagents and conditions*: (a) NaHMDS, THF, 0 °C, then -78 °C, 21, 3.5 h, 55%; (b) TBSCl, imidazole, DMF, r.t., 4 h, 77%; (c) PCC, 4 Å MS, CH₂Cl₂, r.t., 2 h, 67%.

In summary, the synthesis of an advanced analogue of UCS1025A has been achieved employing a dianionic aldol approach. Efforts toward UCS1025A as well as structure–activity relationship studies are ongoing and the results will be reported in due course.

Acknowledgment

We thank the Fonds der Chemischen Industrie for a Liebig fellowship (M.C.), the Deutsche Forschungsgemeinschaft (SPP1179 Organokatalyse) and Prof. Dieter Enders for his encouragement and support.

References and Notes

- (1) Cech, T. R. Angew. Chem. Int. Ed. 2000, 39, 34.
- (2) (a) Greider, C. W.; Blackburn, E. H. *Cell* **1985**, *43*, 405.
 (b) Jacobs, S. A.; Podell, E. R.; Cech, T. R. *Nat. Struct. Mol. Biol.* **2006**, *12*, 218.
- (3) (a) Nakai, R.; Ogawa, H.; Asai, A.; Ando, K.; Agatsuma, T.; Matsumiya, S.; Akinaga, S.; Yamashita, Y.; Mizukami, T. J. Antibiot. 2000, 53, 294. (b) Agatsuma, T.; Akama, T.; Nara, S.; Matsumiya, S.; Nakai, R.; Ogawa, H.; Otaki, S.; Ikeda, S.-I.; Saitoh, Y.; Kanda, Y. Org. Lett. 2002, 4, 4387.
 (c) Nakai, R.; Ishida, H.; Asai, A.; Ogawa, H.; Yamamoto, Y.; Kawasaki, H.; Akinaga, S.; Mizukami, T.; Yamashita, Y. Chem. Biol. 2006, 13, 183.
- (4) Telomestatin: (a) Shinya, K.; Wierzba, K.; Matsuo, K.-I.; Ohtani, T.; Yamada, Y.; Furihata, K.; Hayakawa, Y.; Seto, H. J. Am. Chem. Soc. 2001, 123, 1262. (b) Rezler, E. M.; Seenisamy, J.; Bashyam, S.; Kim, M.-Y.; White, E.; Wilson, W. D.; Hurley, L. H. J. Am. Chem. Soc. 2005, 127, 9439.
 (c) Doi, T.; Yoshida, M.; Shinya, K.; Takahashi, T. Org. Lett. 2006, 8, 4165. Dictyodendrins: (d) Warabi, K.; Matsunaga, S.; van Soest, R. W. M.; Fusetani, N. J. Org. Chem. 2003, 68, 2765. (e) Fürstner, A.; Domostoj, M. M.; Scheiper, B. J. Am. Chem. Soc. 2006, 128, 8087.
 (f) Axinelloside: Warabi, K.; Hamada, T.; Nakao, Y.; Matsunaga, S.; Hirota, H.; van Soest, R. W. M.; Fusetani, N. J. Am. Chem. Soc. 2005, 127, 13262.
- (5) (a) Snider, B. B.; Neubert, B. J. J. Org. Chem. 2004, 69, 8952. (b) Dvornikovs, V.; Hoye, T. R. Abstracts of Papers, 229th National Meeting of the American Chemical Society,

San Diego CA, March 13–17, 2005; American Chemical Society: Washington D.C., 2005, ORGN 665.
(c) Christmann, M. *Abstracts of Papers*, 229th National Meeting of the American Chemical Society, San Diego CA, March 13–17, 2005; American Chemical Society: Washington D.C., 2005, ORGN 378.

- (6) Lambert, T. H.; Danishefsky, S. J. J. Am. Chem. Soc. 2006, 128, 426.
- (7) Hoye, T. R.; Dvornikovs, V. J. Am. Chem. Soc. 2006, 128, 2550.
- (8) (a) Beyersbergen van Henegouwen, W. G.; Hiemstra, H. J. Org. Chem. 1997, 62, 8862. (b) Washburn, D. G.; Heidebrecht, R. W. Jr.; Martin, S. F. Org. Lett. 2003, 5, 3523.
- (9) Huang, P. Q.; Zheng, X.; Wang, S. L.; Ye, J. L.; Jin, L. R.; Chen, Z. *Tetrahedron: Asymmetry* **1999**, *10*, 3309.
- (10) Shieh, H.-M.; Prestwich, D. G. J. Org. Chem. 1981, 46, 4319.
- (11) Typical Procedure: THF (4.5 mL) was cooled to 0 °C and NaHMDS (1.02 mL, 2.0 M in THF, 2.05 mmol) was added. To this solution the benzyl-protected (S)-3-hydroxypyrrolidine-2,5-dione (0.20 g, 0.97 mmol) in THF (3.2 mL) was added dropwise and after complete addition the solution was stirred at 0 °C for an additional 5 min to give a yellowish suspension. The reaction mixture was cooled to -78 °C, cyclohexyl carbaldehyde (0.12 mL, 0.97 mmol) in THF (2.2 mL) was added dropwise and the resulting mixture was stirred at -78 °C for 1 h. The reaction was quenched with sat. NH₄Cl (5 mL) and diluted with Et₂O (30 mL) and CH₂Cl₂ (10 mL). The organic layer was washed with sat. NH₄Cl $(2 \times 5 \text{ mL})$, dried (Na₂SO₄) and concentrated. Purification by column chromatography (SiO₂; *n*-pentane–Et₂O, $1:1 \rightarrow 1:3$) gave 8a and 8b as a mixture of diastereomers in 31% and 25% yields, respectively.
- (12) Compound **8a**: mp 135–137 °C; $[a]^{25}_{D}$ –49.8 (c = 1.01, acetone); R_f 0.19 (n-pentane–Et₂O, 1:1). ¹H NMR (400 MHz, CDCl₃): δ = 7.18–7.27 (m, 5 H), 4.66 (d, J = 5.2 Hz, 1 H), 4.61 (d, J = 14.6 Hz, 1 H), 4.57 (d, J = 14.3 Hz, 1 H), 3.96 (dd, J = 2.2, 9.1 Hz, 1 H), 2.93 (dd, J = 2.3, 5.1 Hz, 1 H), 2.20 (br s), 1.95 (d, J = 12.4 Hz, 1 H), 1.58–1.76 (m, 4 H), 1.44–1.55 (m, 1 H), 1.02–1.26 (m, 3 H), 0.84–0.96 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ = 177.8, 176.2, 135.2, 128.7 (2 × C), 128.3 (2 × C), 127.9, 73.2, 67.3, 51.8, 42.7, 41.3, 29.3, 28.8, 26.3, 25.9, 25.8. IR (KBr): 3462, 2924, 2851, 1696, 1438, 1407, 1356, 1168, 697 cm⁻¹. MS (EI): m/z (%) = 318 (26), 317 (83) [M⁺], 299 (23), 234 (77), 205 (74), 204 (36), 127 (17), 106 (26), 96 (25), 95 (31), 92 (23), 91 (100), 73 (26), 71 (18), 56 (30). Anal Calcd for C₁₈H₂₃NO₄: C, 68.12; H, 7.30; N, 4.41. Found: C, 67.84; H, 7.76; N, 4.26.
- (13) Edmonds, D. J.; Muir, K. W.; Procter, D. J. J. Org. Chem. 2002, 68, 3190.
- (14) Huang, S. L.; Omura, K.; Swern, D. J. Org. Chem. **1976**, 41, 3329.
- (15) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
- (16) Lygo, B.; Hirst, D. J. Synthesis 2005, 3257.
- (17) Larsen, S. D.; Grieco, P. A. J. Am. Chem. Soc. 1985, 107, 1768.
- (18) Wilson, R. M.; Jen, W. S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 11616.
- (19) Hagiwara, H.; Kobayashi, K.; Miya, S. T.; Suzuki, T.; Ando,
 M.; Okamoto, T.; Kobayashi, M.; Yamamoto, I.; Ohtsubo,
 S.; Kato, M.; Uda, H. J. Org. Chem. 2002, 67, 5969.
- (20) Compound **2**: colorless oil; $R_f 0.38$ (pentane–EtOAc, 10:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 11.51$ (s), 7.18 (m), 5.38 (m), 5.22 (d, J = 9.9 Hz), 4.76 (s), 4.68 (d, J = 4.2 Hz), 4.54 (d, J = 14.3 Hz), 4.53 (d, J = 14.3 Hz), 4.44 (d, J = 14.1 Hz), 4.42 (d, J = 14.1 Hz), 3.65 (d, J = 4.2 Hz), 2.95 (dd, J = 5.4,

Synlett 2007, No. 3, 391-394 © Thieme Stuttgart · New York

LETTER

11.1 Hz), 2.62 (m), 2.18 (d, J = 8.2 Hz), 1.33–1.68 (m), 1.08–1.22 (m), 0.90 (d, J = 6.7 Hz, Me), 0.72 (s), 0.71 (s), 0.08 (s), 0.03 (s), 0.01 (s), 0.00 (s). ¹³C NMR (75 MHz, CDCl₃): $\delta = 204.8$, 176.8, 174.7, 174.2, 173.5, 170.1, 135.6, 134.9, 131.4, 130.8, 130.4 (2 × C), 128.7 (2 × C), 128.6 (2 × C), 128.5 (4 × C), 127.9, 127.8, 101.7, 70.1, 68.1, 64.5, 57.4, 46.9, 42.9, 42.5, 42.3, 41.5, 37.3, 36.2, 34.6, 32.8 (2 × C), 30.5, 30.2, 29.8, 26.5, 26.4, 26.3, 26.2, 25.6 (3 × C), 25.4 (3 × C), 18.1, 17.9, 17.5, -3.9, -4.4, -4.9, -5.4. IR (CHCl₃): 3674, 3745, 2929, 2856, 2361, 2335, 1709, 1675, 1215, 839, 757 cm⁻¹. MS (EI): m/z (%) = 438 (100)[M – 57], 363 (11), 214 (7), 91 (46), 75 (42). HRMS: m/z [M – 57] calcd for C₂₅H₃₂NO₄Si: 438.21006; found: 438.21006.