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ABSTRACT

X= CH2, C(COzMe)z
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good to excellent yields

TFA-promoted exo carbocyclizations of nonterminal 7-alkynals gave good to excellent yields of seven-membered cycloalkenones, a
medium-sized functionalized ring present in natural products with relevant pharmacological properties. Nonterminal 5- and 6-alkynals
also gave very good yields of the corresponding exo cyclopentenones and cyclohexenones. On the other hand, terminal 5-alkynals
gave endo carbocyclizations to cyclohexenones. These carbocyclizations can be considered as tandem alkyne hydration/aldol condensation

processes.

Transition-metal- and Lewis and Brgnsted acid-catalyzed
or promoted cyclizations involving alkynes and carbonyl
groups have emerged as an important strategy for the
assembly of functionalized carbocyclic compounds. Tran-
sition-metal-catalyzed cyclizations of alkynals to give a
variety of cyclic structures have been described.' Brgnsted
and Lewis acid-catalyzed cyclizations of acetylenic ke-
tones to afford conjugated cycloalkenones are well-known
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processes.” More recently, Lewis acid-catalyzed cycloi-
somerizations of nonterminal alkynals and alkynones to
endo- or exocyclic o,B-unsaturated cyclopentenones and
cyclohexenones have been reported.>* We describe here
the first cycloisomerization of nonterminal alkynals promoted
by Brgnsted acids (mainly trifluoroacetic acid) to give seven-
membered exo cycloalkenones, an important core in several
biologically important natural products,” as well as new
cycloisomerizations of alkynals to give exo and endo five-
and six-membered cycloalkenones (Scheme 1 and Table 1).°
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Scheme 1. Cycloisomerization of Nonterminal Alkynals in TFA
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Table 1. Cycloisomerization of 5-Alkynal 1a in Acidic
Conditions

Meoch acid MeOzC><:§O
MeO,C CHO A MeO,C
1a 2a
entry acid temp (°C) (%)
1¢ TFA 90 90
2¢ TFA 50 60
3¢ TFA 25 15
4 TFA 90 -
56 HBF, 25 55
6° TfOH 25 49
7 AcOH 90 -
8t TMSOTf 25 30
9° TMSOTf —78—25 35
10° InCl; 25 63
11° BF;0Et; 25 60

0.5 mmol of 1a in 3 mL of acid. ” 0.5 mmol of 1a and 3 equiv of acid
in 3 mL of DCE.

In the search for optimized conditions for the cycloisomer-
ization of alkynals, we first examined the reaction of terminal
5-alkynal 1a with the Brgnsted and Lewis acids depicted in
Table 1. Gratifyingly, heating a trifluoroacetic acid solution
of 1a (0.12 M) in a sealed tube at 90 °C for 1 h gave very
smoothly the cyclohexenone 2a in excellent yield (Table 1,
entry 1). Lower yields and longer reaction times were found
on using lower temperatures (entries 2 and 3). This is the
first time that a new mode of endo cyclization of terminal
5-alkynals has been observed. Other Brgnsted acids such as
HBF, and TfOH also promote the reaction with only 3 equiv
at rt, albeit in moderate yields (entries 5 and 6), but TFA
(3 equiv) and the weaker AcOH led only to recovery of
starting material (entries 4 and 7). The cyclization also occurs
with Lewis acids: TMSOTT gave rapid evolution at rt to 2a
with a low yield (entries 8 and 9); InCl; or BF;OEt, afforded
quite good yields of 2a (entries 10 and 11).

Under optimized conditions (Table 1, entry 1), other
terminal 5-alkynals (mono- and disubstituted at C4, 1b and
1c) also cyclized to give quite good yields of the corre-
sponding endo cyclohexenones 2b and 2¢ (Table 2, entries
2 and 3). Interestingly, when nonterminal 5-alkynals 1d—g
were subjected to acidic conditions, the corresponding exo
cyclopentenones 3d—g were obtained smoothly in quite good
yields (Table 2, entries 4—7).” Nitrogen-tethered alkynal 1d’
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Table 2. Cycloisomerization of 5-Alkynals 1a—h and
6-Alkynals 4a—c in TFA

entry alkynal cycloalkenone (%)
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“ Conditions A: Heating a solution of 0.5 mmol of alkynal in 3 mL of
TFA in a sealed tube at 90 °C for 1—2 h (conditions A). * Conditions B:
Heating a solution of 0.5 mmol of alkynal and 20 equiv of TFA in 3 mL
of DCE in a sealed tube at 90 °C for 1—2 h. ¢ Conditions A but 5 h heating.
E = CO,Me.

also was cycloisomerized to the pyrroline derivative 3d’' in
relatively good yield (entry 4).%

Even nonterminal alkynal 1h, which does not have a
favorable Thorpe—Ingold effect for cyclization,” gave an

(7) Pyrroline 3d' and exo cyclopentenone 3g have been obtained by
AgSbFg-, HBF,-, and BF5°OEt,-catalyzed cycloisomerization of 1d’ and 1g
in 58—81% yields. This and other cyclizations of nonterminal 5- and
6-alkynals are described in ref 3.

(8) Pyrroline 3d' also was obtained by cycloisomerization of the
precursor dimethyl acetal of aldehyde 1d" in the same yield.
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1. G. Org. Biomol. Chem. 2004, 2, 1098.
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excellent yield of the exo cyclopentenone 3h (Table 2, entry
8). Note also that nonterminal 6-alkynals 4a—c gave the
corresponding exo cyclohexenones Sa—c in reasonably good
yields (Table 2, entries 9—11).'°

Gratifyingly, cycloisomerization of nonterminal 7-alkynals
9 occurred smoothly to give exclusively the new exo
cycloheptenones 10 in good to excellent yields (Table 3).

Table 3. Cycloisomerization of Nonterminal 7-Alkynals 9

entry alkynal cycloheptenone time (%)"
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Thus, alkyl and aryl alkynals 9a—c gave the corresponding
cycloheptenones 10a—c in good to excellent yields (Table
3, entries 1—3). The 4,4- and 3,3-disubstituted 7-alkynals
9d and 9e also cyclized to the corresponding exo cyclohep-
tenones 10d and 10e in quite good yields (Table 3, entries
4 and 5). Even the parent hexadec-7-ynal 9f, which lacks a
favorable Thorpe—Ingold effect,” cyclized smoothly to the
cycloheptenone 10f in very good yield (Table 3, entry 6).

A plausible cycloisomerization mechanism is shown in
Scheme 2, although alternative oxete intermediates—as

(10) Unexpectedly, the corresponding terminal 6-alkynal 4d gave a
mixture of three cyclized products: cyclopentenal 6d (27%), cyclopentenone
7d (27%), and cyclohexenal 8d (10%). See Supporting Information for
details.
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Scheme 2. Proposed Mechanism for the TFA-Promoted
Carbocyclization of Alkynals
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reported by Harding® and later by Krische®—cannot be ruled
out. Addition of TFA to the terminal and nonterminal
alkynes'' could lead to the formation of vinyl trifluoroac-
etates A or B, respectively.'? These intermediates can
undergo aldol-type condensations to give the observed endo-
or exocyclic enones, respectively.'® These products could
be considered as being derived from a controlled tandem
alkyne hydration/aldol condensation process.

In summary, we report here the efficient TFA-promoted
exo carbocyclizations of nonterminal 5-, 6-, and 7-alkynals
and endo carbocyclizations of terminal 5-alkynals to give
cyclic enones in good to excellent yields. These carbocy-
clizations can be considered as tandem alkyne hydration/
aldol condensation processes. Work is in progress aimed at
highlighting further applications.
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