Brønsted Acid-Promoted Intramolecular Carbocyclization of Alkynals Leading to Cyclic Enones

Carlos González-Rodríguez, Luz Escalante, Jesús A. Varela, Luis Castedo, and Carlos Saá*

Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain

carlos.saa@usc.es

Received January 22, 2009

ABSTRACT

TFA-promoted *exo* carbocyclizations of nonterminal 7-alkynals gave good to excellent yields of seven-membered cycloalkenones, a medium-sized functionalized ring present in natural products with relevant pharmacological properties. Nonterminal 5- and 6-alkynals also gave very good yields of the corresponding *exo* cyclopentenones and cyclohexenones. On the other hand, terminal 5-alkynals gave *endo* carbocyclizations to cyclohexenones. These carbocyclizations can be considered as tandem alkyne hydration/aldol condensation processes.

Transition-metal- and Lewis and Brønsted acid-catalyzed or promoted cyclizations involving alkynes and carbonyl groups have emerged as an important strategy for the assembly of functionalized carbocyclic compounds. Transition-metal-catalyzed cyclizations of alkynals to give a variety of cyclic structures have been described.¹ Brønsted and Lewis acid-catalyzed cyclizations of acetylenic ketones to afford conjugated cycloalkenones are well-known processes.² More recently, Lewis acid-catalyzed cycloisomerizations of nonterminal alkynals and alkynones to endo- or exocyclic α , β -unsaturated cyclopentenones and cyclohexenones have been reported.^{3,4} We describe here the first cycloisomerization of nonterminal alkynals promoted by Brønsted acids (mainly trifluoroacetic acid) to give sevenmembered *exo* cycloalkenones, an important core in several biologically important natural products,⁵ as well as new cycloisomerizations of alkynals to give *exo* and *endo* fiveand six-membered cycloalkenones (Scheme 1 and Table 1).⁶

For Rh, see: (a) Tanaka, K.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 11492. (b) Tanaka, K.; Sasaki, K.; Takeishi, K.; Sugishima, K. Chem. Commun. 2005, 4711. (c) Shintani, R.; Okamoto, K.; Otomaru, Y.; Ueyama, K.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 54. (d) Rhee, J. U.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 10674. For Ru, see: (e) Chatani, N.; Morimoto, T.; Fukumoto, Y.; Murai, S. J. Am. Chem. Soc. 1998, 120, 5335.
(f) Varela, J. A.; González-Rodríguez, C.; Rubín, S. G.; Castedo, L.; Saá, C. J. Am. Chem. Soc. 2006, 128, 9576. For Ni, see: (g) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890. For Pd, see: (h) Asao, N.; Nogami, T.; Takahashi, K.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 764. (i) Zhao, L.; Lu, X. Angew. Chem., Int. Ed. 2002, 41, 4343. (j) Tsukamoto, H.; Ueno, T.; Kondo, Y. J. Am. Chem. Soc. 2006, 128, 1406. (k) Kusama, H.; Ishida, K.; Funami, H.; Iwasawa, N. Angew. Chem., Int. Ed. 2008, 47, 1.

^{(2) (}a) Harding, C. E.; King, S. L. J. Org. Chem. **1992**, 57, 883, and references therein. (b) Balog, A.; Geib, S. J.; Curran, D. P. J. Org. Chem. **1995**, 60, 345, and references therein. (c) Wempe, M. F.; Grunwell, J. R. J. Org. Chem. **1995**, 60, 2714, and references therein.

⁽³⁾ Rhee, J. U.; Krische, M. J. Org. Lett. 2005, 7, 2493.

^{(4) (}a) Jin, T.; Yamamoto, Y. *Org. Lett.* **2007**, *9*, 5259. Enynones: (b) Jin, T.; Yamamoto, Y. *Org. Lett.* **2008**, *10*, 3137. For related intermolecular cyclizations of alkynes and aldehydes, see: (c) Saito, A.; Umakoshi, M.; Yagyu, N.; Hanzawa, Y. *Org. Lett.* **2008**, *10*, 1783.

^{(5) (}a) Brady, S. F.; Bondi, S. M.; Clardy, J. J. Am. Chem. Soc. 2001, 123, 9900. (b) Williams, M. J.; Deak, H. L.; Snapper, M. L. J. Am. Chem. Soc. 2007, 129, 486.

⁽⁶⁾ For carbocyclization of ynamide-aldehyde substrates to five- and sixmembered cycloalkenamides, see: (a) Kurtz, K. C. M.; Hsung, R. P.; Zhang, Y. *Org. Lett.* **2006**, *8*, 231. (b) Formation of a seven-membered cycloalkenimide in low yield using a singular ynamide-aldehyde substrate has also been described. (c) For carbocyclization of terminal alkynals to cyclopentencarbaldehydes, see: Binder, J. T.; Crone, B.; Haug, T. T.; Menz, H.; Kirsch, S. F. *Org. Lett.* **2008**, *10*, 1025.

Scheme 1. Cycloisomerization of Nonterminal Alkynals in TFA

	MeO ₂ Cac		
	MeO ₂ C	∆ MeO₂C	
	1a	2a	
entry	acid	temp (°C)	(%)
1^a	TFA	90	90
2^a	TFA	50	60
3^a	TFA	25	15
4^b	TFA	90	—
5^b	HBF_4	25	55
6^b	TfOH	25	49
7^a	AcOH	90	—
8^b	TMSOTf	25	30
9^b	TMSOTf	$-78 \rightarrow 25$	35
10^b	$InCl_3$	25	63
11^b	$\mathrm{BF_3OEt_2}$	25	60
^{<i>a</i>} 0.5 mm n 3 mL of 1	ol of 1a in 3 mL of acid	1. ^b 0.5 mmol of 1a and 3	equiv of acid

In the search for optimized conditions for the cycloisomerization of alkynals, we first examined the reaction of terminal 5-alkynal 1a with the Brønsted and Lewis acids depicted in Table 1. Gratifyingly, heating a trifluoroacetic acid solution of **1a** (0.12 M) in a sealed tube at 90 °C for 1 h gave very smoothly the cyclohexenone 2a in excellent yield (Table 1, entry 1). Lower yields and longer reaction times were found on using lower temperatures (entries 2 and 3). This is the first time that a new mode of endo cyclization of terminal 5-alkynals has been observed. Other Brønsted acids such as HBF₄ and TfOH also promote the reaction with only 3 equiv at rt, albeit in moderate yields (entries 5 and 6), but TFA (3 equiv) and the weaker AcOH led only to recovery of starting material (entries 4 and 7). The cyclization also occurs with Lewis acids: TMSOTf gave rapid evolution at rt to 2a with a low yield (entries 8 and 9); InCl₃ or BF₃OEt₂ afforded quite good yields of 2a (entries 10 and 11).

Under optimized conditions (Table 1, entry 1), other terminal 5-alkynals (mono- and disubstituted at C4, **1b** and **1c**) also cyclized to give quite good yields of the corresponding *endo* cyclohexenones **2b** and **2c** (Table 2, entries 2 and 3). Interestingly, when nonterminal 5-alkynals **1d**–**g** were subjected to acidic conditions, the corresponding *exo* cyclopentenones **3d**–**g** were obtained smoothly in quite good yields (Table 2, entries 4–7).⁷ Nitrogen-tethered alkynal **1d'**

Table 2. Cycloisomerization	of 5-Alkynals	1a-h	and
6-Alkynals 4a - c in TFA			

entry	alkynal	cycloalkenone	(%) ^a
1			90
2			70
3		$E \rightarrow 2c$	65
4	X Me	X Me	3d , 82
	$Id X = C(CO_2Me)_2$ $Id' X = NTe$	3d	3d' 62
5	E_{E}	3d' $E \xrightarrow{C} Et$ 3e	60
6	E C _s H ₁₁	E E Sf	60
7	E lg	E B 3g	83
8 ^b	<u></u> c4H6 ال	ل کا ^ل _{C4H9} 3h	90
9°	E Me E 4a	E Sa	63
10°	Е – с ₆ н ₁₁ – о 4b		67
11°	$E \xrightarrow{Me}_{e} Me$		57
		5c	

^{*a*} Conditions A: Heating a solution of 0.5 mmol of alkynal in 3 mL of TFA in a sealed tube at 90 °C for 1-2 h (conditions A). ^{*b*} Conditions B: Heating a solution of 0.5 mmol of alkynal and 20 equiv of TFA in 3 mL of DCE in a sealed tube at 90 °C for 1-2 h. ^{*c*} Conditions A but 5 h heating. $E = CO_2Me$.

also was cycloisomerized to the pyrroline derivative 3d' in relatively good yield (entry 4).⁸

Even nonterminal alkynal **1h**, which does not have a favorable Thorpe–Ingold effect for cyclization,⁹ gave an

⁽⁷⁾ Pyrroline **3d'** and *exo* cyclopentenone **3g** have been obtained by $AgSbF_{6}$ -, HBF_{4} -, and BF_{3} -OEt₂-catalyzed cycloisomerization of **1d'** and **1g** in 58–81% yields. This and other cyclizations of nonterminal 5- and 6-alkynals are described in ref 3.

⁽⁸⁾ Pyrroline 3d' also was obtained by cycloisomerization of the precursor dimethyl acetal of aldehyde 1d' in the same yield.

⁽⁹⁾ Ingold, K. C.; Sako, S.; Thorpe, J. F. J. Chem. Soc. **1922**, 1117. For a recent paper, see: Kaneti, J.; Kirby, A. J.; Koedjikov, A. H.; Pojarlieff, I. G. Org. Biomol. Chem. **2004**, 2, 1098.

excellent yield of the *exo* cyclopentenone **3h** (Table 2, entry 8). Note also that nonterminal 6-alkynals $4\mathbf{a}-\mathbf{c}$ gave the corresponding *exo* cyclohexenones $5\mathbf{a}-\mathbf{c}$ in reasonably good yields (Table 2, entries 9–11).¹⁰

Gratifyingly, cycloisomerization of nonterminal 7-alkynals 9 occurred smoothly to give exclusively the new *exo* cycloheptenones 10 in good to excellent yields (Table 3).

Table 3. Cyclolsonicitzation of Nonterminal 7-Aikynais	Table 3	B. Cy	vcloisom	erization	of Nont	terminal	7-Alkynals	; 9
---	---------	-------	----------	-----------	---------	----------	------------	-----

^{*a*} Conditions A. ^{*b*} Conditions B. $X = C(CO_2Me)_2$.

Thus, alkyl and aryl alkynals 9a-c gave the corresponding cycloheptenones 10a-c in good to excellent yields (Table 3, entries 1–3). The 4,4- and 3,3-disubstituted 7-alkynals **9d** and **9e** also cyclized to the corresponding *exo* cycloheptenones **10d** and **10e** in quite good yields (Table 3, entries 4 and 5). Even the parent hexadec-7-ynal **9f**, which lacks a favorable Thorpe–Ingold effect,⁹ cyclized smoothly to the cycloheptenone **10f** in very good yield (Table 3, entry 6).

A plausible cycloisomerization mechanism is shown in Scheme 2, although alternative oxete intermediates—as

reported by Harding^{2a} and later by Krische³—cannot be ruled out. Addition of TFA to the terminal and nonterminal alkynes¹¹ could lead to the formation of vinyl trifluoroacetates **A** or **B**, respectively.¹² These intermediates can undergo aldol-type condensations to give the observed endoor exocyclic enones, respectively.¹³ These products could be considered as being derived from a controlled tandem alkyne hydration/aldol condensation process.

In summary, we report here the efficient TFA-promoted *exo* carbocyclizations of nonterminal 5-, 6-, and 7-alkynals and *endo* carbocyclizations of terminal 5-alkynals to give cyclic enones in good to excellent yields. These carbocyclizations can be considered as tandem alkyne hydration/ aldol condensation processes. Work is in progress aimed at highlighting further applications.

Acknowledgment. This work was supported by the MICINN (CTQ2008-06557), Consolider Ingenio 2010 (CSD2007-00006), and by the Xunta de Galicia (2007/XA084 and INCITE08PXIB209024PR). C.G.R. also thanks the MEC (Spain) for a FPI fellowship, and L.E. thanks Fundayacucho (Venezuela) for a predoctoral grant.

Supporting Information Available: A typical experimental procedure and spectral data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL900142R

⁽¹⁰⁾ Unexpectedly, the corresponding terminal 6-alkynal 4d gave a mixture of three cyclized products: cyclopentenal 6d (27%), cyclopentenone 7d (27%), and cyclohexenal 8d (10%). See Supporting Information for details.

⁽¹¹⁾ For Markovnikov and anti-Markovnikov hydration of alkynes, see: Hintermann, L.; Labonne, A. *Synthesis* **2007**, 1121.

⁽¹²⁾ In careful cyclization experiments using CF₃COOD, evidence was found for some intermediates that contain vinyl groups (¹H NMR) and trifluoroacetate units (GCMS). See Supporting Information for details.

⁽¹³⁾ Heating the 5,5-disubstituted 9-methyl-8-nonynal 11 in TFA gave the corresponding 8-oxodecanal 12 in 40% yield, indicating that only hydration of the alkyne (from the corresponding vinyl trifluoroacetate) occurred. See Supporting Information for details.