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Abstract: The formal synthesis of kainic acid was carried out in
eleven steps. The key cyclization step was accomplished through an
intramolecular palladium-catalyzed allylic alkylation of an allylic
sulfone. Further functionalization of the resulting pyrrolidone
featured, inter alia, a N-heterocyclic carbene–copper hydride
(NHC–CuH)-mediated stereoconvergent conjugate reduction.
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(–)-a-Kainic acid is the parent member of kainoids, an
important class of natural nonproteinogenic amino acids
(Figure 1). It was first isolated in 1953 from Digenea
simplex.1 In addition to its insecticidal and anthelmintic
properties, it has been shown to display powerful neuro-
excitatory activity in the mammalian central nervous sys-
tem, where it acts as conformationally restricted analogue
of L-glutamate. For these reasons, it has found funda-
mental applications in the study of neurodegenerative
disorders2 such as Alzheimer’s disease,3 Huntington’s
chorea4 and epilepsy.5 Since the first synthesis of (–)-kain-
ic acid, carried out by Oppolzer,6 numerous total synthe-
ses of this compound have been described, most of them
being of chiral pool derivation.7,8 Interest in the synthesis
of such a target amazingly increased in recent years, due
to a temporary halt on the extraction from the above alga,
which brought about shortage of this natural product.9

Following our ongoing interest in the synthesis of nitro-
gen-based heterocycles, we reported that pyrrolidones
could be built up regio- and stereoselectively via the intra-

molecular 5-exo interaction between a stabilized acet-
amide enolate anion and a properly tethered h3-allyl-
palladium appendage (Scheme 1).10 Moreover, we subse-
quently showed that this reaction could take place under
biphasic conditions, which are milder and higher yielding
than those previously reported in monophasic media.11

Scheme 1 Palladium-catalyzed intramolecular allylic alkylation 
under biphasic conditions

In order to further test the value of the above methodolo-
gy, we next envisioned to exploit our strategy in the syn-
thesis of kainic acid. Accordingly, since one of the most
efficient total syntheses reported to date entails pyrroli-
done 1 as an advanced intermediate,12 we focused on the
latter structure as our synthetic goal. We report herein the
formal synthesis of (±)-kainic acid according to the
retrosynthetic path depicted in Scheme 2.

Scheme 2 Retrosynthetic approach to kainic acid; Pd-AA = palladi-
um-catalyzed allylic alkylation
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Figure 1 (–)-a-Kainic acid and (–)-domoic acid structures
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Key precursor 1 would arise from the trans-substituted
pyrrolidone 2 via Horner–Wadsworth–Emmons olefina-
tion with ethyl glyoxalate, followed by reduction of the
electron-poor double bond. Pyrrolidone 2 could in turn be
derived from an intramolecular palladium-catalyzed allyl-
ic alkylation of the unsaturated a-phosphonoamide 3.

1-Acetoxy-4-chloro-2-methyl-2-butene was first recog-
nized as a reasonable intermediate in the synthesis of the
cyclization precursor 6.13 However, in view of the diffi-
culties in preparing and isolating this reagent in satis-
factory yield14 we decided to look for an alternative
precursor. A quick perusal of the literature suggested that
chlorosulfone (E)-4 could be an ideal choice. Indeed,
allylic sulfones are known to generate h3-allyl-palladium
complexes, although their use is still rather underdevel-
oped with respect to the more popular allyl acetates or
carbonates.15 Copper-catalyzed condensation between
phenylsulfonyl chloride and isoprene afforded 4 in 61%
yield on multigram scale.16 Reaction of the latter with ex-
cess p-methoxybenzylamine afforded allylic amine 5 in
80% yield. Subsequent acylation with dimethylphos-
phonoacetic acid gave the cyclization precursor 6 in 98%
yield (Scheme 3).

Scheme 3 Reagents and conditions: (a) CuCl (5 mol%), Et3NHCl
(5 mol%), MeCN, 60 °C, 16 h; (b) p-MeOC6H4CH2NH2 (3 equiv),
MeCN, reflux, 4 h; (c) (MeO)2P(O)CH2COOH (1.2 equiv), DCC (1.5
equiv), DMAP (5 mol%), THF, r.t., 16 h.

Intramolecular palladium-catalyzed allylic alkylation of
the phosphonoacetamide 6 was next tested (Scheme 4).
Much to our satisfaction, treatment of the substrate 6
with [Pd(C3H5)Cl]2 (5 mol%), 1,2-bis(diphenylphosphi-
no)ethane (dppe; 12.5 mol%), n-Bu4NBr (10 mol%) and
KOH (4.0 equiv) in 1:1 CH2Cl2–H2O gave, after 16 hours
at room temperature, the expected pyrrolidone 7 in quan-
titative yield and a >95:5 trans/cis diastereomeric ratio.17

Horner–Wadsworth–Emmons olefination was next un-
dertaken. Deprotonation of 7 with NaH at 0 °C in THF fol-
lowed by condensation with excess ethyl glyoxalate in
toluene afforded the expected diene pyrrolidone 8 (54%
yield) as a 1:1 E/Z mixture, separable by flash chromatog-
raphy (Scheme 5).

Reduction of the conjugate double bond was next tackled
for each isomer, separately. The use of L-Selectride®18

was rather disappointing, leading to complete degradation
of starting material in the case of (E)-8, and to a moderate

yield (52%) of the desired pyrrolidone 9 with a poor 65:35
cis/trans diastereomeric ratio, when starting from (Z)-8.
Conversely, N-heterocyclic carbene–copper hydride
(NHC–CuH) efficiently promoted the reduction step.19 In-
deed, treatment of (Z)-8 or (E)-8 with 1,3-bis(2,6-diiso-
propylphenyl)imidazol-2-ylidene (IPr)-CuCl (2 mol%), t-
BuONa (10 mol%), and excess poly(methylhydrosilox-
ane) (PMHS) as the hydride source, gave the cis-pyrroli-
done 9 as the only product in 84% and 67% yields,
respectively (Scheme 6). A similar result was obtained
starting from an equimolar E/Z mixture of 8 (72% yield).20

Scheme 6 Reagents and conditions: (a) IPr-CuCl (2 mol%), 
t-BuONa (10 mol%), PMHS (4 equiv), toluene, r.t., 16 h.

PMB deprotection completed the formal synthesis of
kainic acid. Thus, treatment of 9 with CAN in MeOH gave
rise to Ganem’s intermediate 1 (47% yield, i.e. 6 steps and
14% overall yield from the known chlorosulfone 4),
whose spectroscopic data were in agreement with those
reported in the literature.12 According to Ganem’s
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procedure, a four-step sequence can convert pyrrolidone 1
into kainic acid in an overall 73% yield (Scheme 7).
Moreover, the two enantiomers may be further separated
via a (+)-ephedrine-mediated resolution, according to
Oppolzer’s protocol.21

Scheme 7 Reagents and conditions: (a) (NH4)2Ce(NO3)6 (4 equiv),
MeOH, 0 °C then r.t., 16 h.

In summary, the above described sequence represents a
successful eleven-step formal synthesis of kainic acid.
The key cyclization step was accomplished through an in-
tramolecular palladium-catalyzed  allylic alkylation from
an allylic sulfone. Further functionalization of the result-
ing pyrrolidone exploited a stereoconvergent NHC–CuH-
mediated conjugate reduction. Extension of the present
strategy to an enantioselective synthesis of (–)-kainic acid
is currently under investigation.
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