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Abstract: Zirconium tetrakis(dodecyl sulfate) [Zr(DS)4] efficiently catalyzes the
synthesis of quinoxaline derivatives via the condensation of 1,2-diamines with
1,2-diketones in H2O as a green media at room temperature. Using this method,
the title compounds are produced in good to excellent yields and relatively short
reaction times.
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The development of simple and efficient chemical processes or methodol-
ogies for the synthesis of biologically active compounds in water is one of
the major challenges for chemists, because water is a safe, very cheap,
readily available, and environmentally benign solvent.[1] Although
today’s environmental consciousness imposes the use of water as a
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solvent on both industrial and academic chemists, organic solvents are
still used instead of water for mainly two reasons. First, most organic
substances are insoluble in water, and as a result, water does not function
as a reaction medium. Second, many reactive substrates, reagents, and
catalysts are decomposed or deactivated by water. Some of these pro-
blems were solved with the discovery of water-tolerant Lewis acids by
Kobayashi et al.[2] After that, the successful applications of some Lewis
acid–surfactant combined catalysts (LASC) such as scandium tris(dodecyl
sulfate),[3] aluminum tris(dodecyl sulfate),[4] and the other Metal dodecyl
sulfates[5] in organic functional group transformations in aqueous media
have been reported.

Quinoxaline derivatives are an important class of nitrogen-containing
heterocycles and their importance has been reported in the literature.[6,7]

For example, they show very interesting pharmacological properties such
as antiprotozoal,[7a] antibiotic,[7b] antibacterial,[7c] antifungal,[7d] and
anticancer activities.[7e,f] Several synthetic routes have been developed
for the synthesis of quinoxaline derivatives[8]; however, the most common
method is the condensation of 1,2-diamines with 1,2-dicarbonyl com-
pounds in the presence of catalysts such as ceric(IV) ammonium nitrate,[9a]

iodine in DMSO,[9b] sulfamic acid,[9c] Yb(OTf)3,[9d] oxalic acid,[9e]

o-iodoxybenzoic acid,[9f] H6P2W18O62�24H2O,[9g] KHSO4,[9h] and polyani-
line-sulfate salt.[9i] It is worth noting that the methods that have been
established for the preparation of quinoxaline derivatives are associated
with one or more of the following drawbacks: (i) the need for anhydrous
conditions, (ii) the use of expensive catalysts, (iii) unsatisfactory yields, (iv)
long reaction times, (v) harsh reaction conditions, (vi) inefficiency of the
method when aliphatic or aryl 1,2-diamines with electron-withdrawing
substituents are applied in the condensation reaction, and (vii) no agree-
ment with the green chemistry protocols by the use of volatile organic sol-
vents. Furthermore, some methods need cumbersome experimental and
multistep procedures. Therefore, development of an efficient, simple,
cheap, safe, and green method for the preparation of quinoxalines is desir-
able. As part of our program to develop more efficient and environ-
mentally benign methods for organic syntheses using economic and
ecofriendly catalysts,[9e,10] in this work, we report a facile, efficient, and
practical method for the preparation of quinoxaline derivatives from
1,2-diamines and 1,2-diketones using Zr(DS)4 in water at extremely mild
reaction conditions (Scheme 1). It is important to note that this method
has none of the previously mentioned disadvantages at all.

At first, we studied the reaction of 1,2-benzene diamine (1 mmol)
with benzil (1 mmol) in H2O (40 mL) to optimize the reaction conditions
with respect to molar ratio of Zr(DS)4 to the substrate and temperature
(Scheme 1, Table 1). We found that 2.5 mol% of Zr(DS)4 was sufficient to
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produce the desired quinoxaline in 94% yield within 30 min at room
temperature (Table 1, entry 4).

Then, the generality and the scope of the procedure was evaluated by
the reaction of a number of aryl and alkyl 1,2-diamines with structurally
and electronically diverse 1,2-diketones. The results are summarized in
Table 2. As it can be seen from Table 2, all reactions proceeded efficiently
and the desired products were produced in good to excellent yields in rela-
tively short reaction times. We investigated the effect of electron-releasing
and electron-withdrawing substituents on the aromatic ring of aryl 1,2-dia-
mines on the reaction. As Table 2 indicates, electron-releasing groups had
no significant effect on the reaction results (Table 2, entries
6–11); however, electron-withdrawing substituents decreased the yields
and increased the reaction times (Table 2, entries 12 and 13). Moreover,
harsher reaction conditions were needed in these cases. The results also
showed that the structure and the electronic properties of the aromatic ring
of 1,2-diketones had negligible effect on the yields and the reaction times.
Aliphatic 1,2-diamines also afforded the corresponding quinoxalines in
high yields but in harsher reaction conditions (Table 2, entries 15 and 16).

Table 1. Reaction of benzene-1,2-diamine with benzil in the presence of different
molar ratios of Zr(DS)4 at different temperatures

Entry
Molar ratio of

Zr(DS)4 (mol%)
Temperature

(�C)
Time
(min)

Yielda

(%)

1 1 rt 90 42
2 1.5 rt 80 71
3 2 rt 50 91
4 2.5 rt 30 94
5 3 rt 30 94
6 2.5 40 25 95
7 2.5 60 15 93

aIsolated yield.

Scheme 1. The condensation of 1,2-benzene diamine with benzil.

Zirconium Tetrakis(dodecyl Sulfate) 571
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Table 2. Synthesis of quinoxalines via the condensation of 1,2-diamines with 1,2-
diketones using Zr(DS)4 in H2O at room temperature

Entry 1,2-Diamine Product
Time
(min)

Yielda

(%)

Mp
(�C)
(lit.)

1 30 94 129–130
(130–131)[9e]

2 35 93 149–151
(148–150)[9e]

3 30 95 132–134
(135–137)[9f]

4 60 87 55–57
(56)[9a]

5 35 89 127–129
(131)[9a]

6 25 96 116–118
(117–118)[9f]

(Continued )
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Table 2. Continued

Entry 1,2-Diamine Product
Time
(min)

Yielda

(%)

Mp
(�C)
(lit.)

7 35 95 139–140
(137)[9a]

8 35 93 128–130
(125–127)[9f]

9 25 94 163–165
(165–167)[9f]

10 20 93 175–177
(172)[9c]

11 15 94 302–304
(304–306)[9e]

12b 90 86 190–192
(193–194)[9f]

(Continued )
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Ease of recycling of the catalyst is one of the advantages of our
method. For the reaction of benzene-1,2-diamine with benzil, no signifi-
cant loss of the product yield was observed when Zr(DS)4 was reused
after five times (please see Table 3).

In summary, we have introduced a highly efficient catalyst for the
condensation of 1,2-diamines with 1,2-diketones in aqueous media. The
promising points for the presented methodology are efficiency, general-
ity, high yield, short reaction time, ease of handling of the catalyst, clea-
ner reaction profile, ease of product isolation, simplicity, potential for

Table 2. Continued

Entry 1,2-Diamine Product
Time
(min)

Yielda

(%)

Mp
(�C)
(lit.)

13b 110 83 188–190
(192–194)[9f]

14 30 93 184–186
(187–188)[9a]

15b 50 85 168–170
(167)[9c]

16b 50 87 155–157
(158)[9c]

aIsolated yield.
bThis reaction was carried out under reflux conditions.
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recycling of the catalyst, and finally agreement with the green chemistry
protocols, which all make it a useful and attractive process for the
synthesis of quinoxaline derivatives.

EXPERIMENTAL

All chemicals were purchased from Merck, Fluka, or Aldrich chemical
companies. All known compounds were identified by comparison of their
melting points and spectral data with those in the authentic samples. 1H
NMR (250 MHz) and 13C NMR (62.5 MHz) were run on a Bruker
Avance DPX-250, FT-NMR spectrometer (d in ppm). Mass spectra were
recorded on a Shimadzu GC MS-QP 1000 EX apparatus. Microanalyses
were performed on a Perkin-Elmer 240-B microanalyzer. Melting points
were recorded on a Büchi B-545 apparatus in open capillary tubes.

General Procedure for the Synthesis of Quinoxaline Derivatives

A mixture of 1,2-diamine (1 mmol) and 1,2-diketone (1 mmol) was added
to a suspension of Zr(DS)4 (0.029 g, 0.025 mmol, 2.5 mol%) in water
(40 mL), and the resulting mixture was stirred at room temperature for
the times reported in Table 2. Then, EtOAc (2� 10 mL) was added to
the reaction mixture, and the organic phase was separated and dried over
anhydrous Na2SO4. The solvent was evaporated, and the crude product
was purified by recrystallization from EtOH. For recovering the catalyst,
aqueous phase and organic phase were centrifuged together which a tri-
phase system (organic, aqueous, and solid phase) was obtained. The solid
phase (catalyst) was separated and dried under reduced pressure and
reused.

Table 3. Reaction of benzene-1,2-diamine with benzil in
the presence of recycled Zr(DS)4

Entry Cycle Time (min) Yielda (%)

1 — 30 94
2 1 30 95
3 2 30 93
4 3 35 92
5 4 45 94
6 5 50 89

aIsolated yield.

Zirconium Tetrakis(dodecyl Sulfate) 575

D
ow

nl
oa

de
d 

by
 [

C
as

e 
W

es
te

rn
 R

es
er

ve
 U

ni
ve

rs
ity

] 
at

 1
1:

14
 0

6 
N

ov
em

be
r 

20
14

 



Selected Spectral Data of the Products

2,3-Diphenylquinoxaline (1)

White solid; mp 129–130 �C (lit.[9e] mp 130–131 �C); 1H NMR (CDCl3):
d¼ 7.29–7.33 (m, 6H), 7.51 (m, 4H), 7.77 (m, 2H), 8.21 (m, 2H); 13C
NMR (CDCl3): d¼ 128.1, 128.7, 129.1, 129.9, 131.0, 139.6, 141.7,
153.2; MS: m=z¼ 282 (Mþ); Anal. calcd. for C20H14N2: C, 85.08; H,
5.00; N, 9.92. Found: C, 85.31; H, 4.83; N, 10.11.

9,10-Dimethylacenaphtho[1,2-b]quinoxaline (11)

Yellow solid; mp 302–304 �C (lit.[9e] mp 304–306 �C); 1H NMR (CDCl3):
d¼ 2.51 (s, 6H), 7.78 (m, 2H), 7.89 (s, 2H), 8.03 (m, 2H), 8.34 (m, 2H);
13C NMR (CDCl3): d¼ 20.3, 121.5, 127.8, 128.0, 128.6, 128.9, 129.1,
139.5, 140.00, 148.5, 153.3; MS: m=z¼ 282 (Mþ). Anal. calcd. for
C20H14N2: C, 85.08; H, 5.00; N, 9.92. Found: C, 84.90; H, 5.24; N, 10.13.

2,3-Diphenylbenzo[g]quinoxaline (14)

Yellow solid; mp 184–186 �C (lit.[9a] mp 187–188 �C); 1H NMR (CDC13):
d¼ 7.30–7.34 (m, 6H), 7.48–7.53 (m, 6H), 8.03 (m, 2H), 8.59 (s, 2H); 13C
NMR (CDCl3): d¼ 126.5, 127.4, 128.0, 128.3, 129.0, 129.7, 133.8, 136.9,
139.4, 153.7; MS: m=z¼ 332 (Mþ). Anal. calcd. for C24H16N2: C, 86.72;
H, 4.85; N, 8.43. Found: C, 86.93; H, 4.70; N, 8.56.
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