Ca⁺⁺-MODULATORS. UNUSUAL HIGHLY STEREOSPECIFIC HANTZSCH-LIKE CYCLIZATION: FIRST AUTHENTICATED EXAMPLE OF 2-CHLOROMETHYLENE-1,2,3,4-TETRAHYDROPYRIDINE

M. Frigerio, A. Zaliani, C. Riva, G.Palmisano^a T. Pilati^b and C.A. Gandolfi^{*}

Boehringer Biochemia Robin S.p.A., Research Laboratories, 20052 Monza, Italy Università di Milano: a. Dipart. Chimica Organica ed Industriale,
b. CNR - Studio relazioni fra struttura e reattività chimica, 20133 Milano, Italy

Summary: Hantzsch cyclization of ethyl 4-chloro-2-benzylidene-acetoacetates 5 with methyl 3-aminocrotonate 6 leads to 2-chloromethylene-1,2,3,4-tetrahydropyridine-3,5-dicarboxylic esters 7. X-ray structure analysis and ¹H-NMR of 7a established the configuration at C₃-C₄ as <u>trans</u>, with both the two bulky substituents in the axial position, while the exocyclic double bond is present only in the Z configuration.

The Hantzsch pyridine synthesis¹ has been well known since last century and widely applied for 1,4-dihydropyridine preparation². 1,4-Dihydropyridines (DHPs) such as Nifedipine <u>1</u> and Bay K-8644 <u>2</u> are well recognized modulators of calcium ions fluxes across cellular membranes regulating in an opposite way the contractility of smooth muscle³. Great efforts have been undertaken to understand the molecular basis of action of these substances and to improve their pharmacological profile⁴; novel and attractive research tools might be offered by DHPs substituted at the methyl groups, which have been scarcely investigated up to now^{4a}.

In this perspective, time consuming synthesis of the necessary γ -substituted- β -ketoesters and repetitive Hantzsch cyclizations could be avoided if 2-chloromethyl-1,4-dihydropyridine such as <u>3a,b</u> were easily available as key synthetic intermediates.

In a classical three component cyclization (γ -chloro- β -ketoester, benzaldehyde and

3-aminocrotonate; EtOH, reflux, 18-24 hrs) the high reactivity of the allylic chlorine of <u>3a,b</u> seems to preclude the recovery of the desired compound, and the bicyclic lactones 1,4,5,7-tetrahydrofuro-[3,4-b]-pyridines⁵ <u>4a,b</u> are the only reaction products. Only moderate yields of <u>3</u> (38-69%) arise from the Čupka and Svetlík alternative procedure⁶.

As we observed that Knoevenagel condensation of γ -chloro- β -ketoesters with benzaldehydes leads to (E,Z)-4-chloro-2-benzylidene-acetoacetates $\underline{5}$ in high yields (80-90%)⁷, the unwanted lactonization process must occur during Michael addition of 3-aminocrotonate $\underline{6}$ to $\underline{5}$ and/or during the following dihydropyridine ring closure. On the basis of this experimental finding, the two component Michael reaction of $\underline{5}$ with $\underline{6}$ in EtOH at reflux temperature for 10-20 minutes was found to give rise to a complex mixture of "polar adducts" (TLC monitoring) whose treatment with 5-10% mol. equiv. of gaseous HCl affords <u>3a,b</u> (85-90% yield) free from any bicyclic by-products <u>4a,b</u>, after spontaneous cooling to room temperature.

Unexpectedly when the reaction mixture was cooled to room temperature *before* acid treatment a different substance, $\underline{7}$, whose structure has been later defined as 2-chloromethylene-1,2,3,4-tetrahydropyridine, crystallized (e.g. $\underline{7a}$ m.p. 125-127°C, yields: 55-70%; $\underline{7b}$ m.p. 102-105°C, y: 45-60%). $\underline{7}$ is quite stable in pyridine or methanol solutions, while it isomerizes quickly to $\underline{3}$ in chloroform (5', r.t.), or in warm acidic ethanol.

The structure of $\underline{7}$ was elucidated both by chemical and spectroscopic methods. Oxidation (DDQ-pyridine, r.t.) of both $\underline{3}$ and $\underline{7}$ leads to the same pyridine derivative. Acidification (CF₃CO₂D) of a methanol-d₄ solution of $\underline{7a}$ leads to the incorporation of one deuterium in the chloromethyl group of $\underline{3a}$ [¹H-NMR(CDCl₃): 7a CHDCl δ 4.7 ppm, bs; $\underline{3a}$ CH₂Cl δ_A 4.83, δ_B 4.97, J_{AB} 12.8 Hz].

The UV-spectrum (MeOH, c $5x10^{-5}$ M) of <u>7</u> differs greatly from that of <u>3</u>, showing only one maximum at 305 nm (<u>7a</u> λ 304 nm, ϵ 23000; <u>7b</u> λ 305 nm, ϵ 23700) while 1,4-dihydropyridines possess two maxima⁸ (e.g. <u>3a</u> λ_1 240 nm, ϵ 23500; λ_2 350 nm, ϵ 6000).

The ¹H-NMR spectrum (200 MHz, Py-d₅) of <u>7a</u> shows a sharp singlet at δ 5.60 for C=C<u>H</u>Cl and two doublets for H₃ and H₄ respectively at δ 3.87 and δ 5.21 with J 1.8 Hz, thus suggesting, according to the Karplus equation, that the dihedral angle between H₃ and H₄ must be close to 65° or 115°.

The ¹³C-NMR spectrum (20.15 MHz, Py-d₅) of <u>7a</u> confirms the presence of two sp₃-methine groups [δ 41.5 and δ 49.5 for C₃ and C₄] and one sp₂-methine group [δ 98.3 (C=<u>C</u>HCl)].

The single crystal X-ray diffraction analysis (Fig.1)⁹ indicates that <u>7a</u> is a single diastereoisomer

Figure 1: ORTEP of 7a

configuration of the exocyclic double bond is Z, the C-Cl and N-H bonds being parallel to one another.

It is worth to underline that compound $\underline{7}$ contains the quite unusual and reactive isolated moiety NH-C=CHCl¹⁰ whose structural features (bond lengths and angles) have not been, until now, deeply studied.

The elucidation of the structure of $\underline{7}$ may offer a new insight into the mechanism of Hantzsch cyclization suggesting that a quick Michael addition of methyl 3-aminocrotonate $\underline{6}$ to Z- and E- benzylidene $\underline{5}$, leading to "polar adducts" intermediates 2-hydroxy-1,2,3,4-tetrahydropyridines¹¹ <u>8-cis</u> and <u>8-trans</u>, is followed by the rate limiting dehydration process to endo- or exo-cyclic double bond.

Moreover only a regio- and stereoselective dehydration process on intermediates <u>8</u> may explain the formation of the single geometrical isomer <u>7a</u>, possessing a Z-exocyclic double bond, with C-Cl and N-H bonds mutually parallel, through stereoselective abstraction of only one proton of CH₂Cl group. Further, the trans stereochemistry of the pseudo axial substituents at C₃ and C₄ (Figure 1) strongly indicates that the formation of intermediate <u>8-cis</u>, at least in the described reaction conditions, is unlikely or forbidden.

References and notes

1. A.Hantzsch, Justus Liebigs Ann.Chem., 215, 1, (1882).

2. For a recent review see: A.Sausinš and G.Duburs, Heterocycles, 27, 269-314, (1988).

3. R.A.Janis, P.J.Silver and D.J.Triggle in "Advances in Drug Research" vol.<u>16</u>, 309-591, Academic Press,(1987).

4. a) J.A.Arrowsmith, S.F.Campbell, P.E.Cross, J.K.Stubb, R.A.Burges, D.G.Gardiner and K.J.Blackburn, J. Med. Chem, <u>29</u>, 1696, (1986). b) Y.Kimura, H.Fukui, M.Tanaka, M.Okamoto, A.Morino, A.Miura, K.Kimura and H.Enamoto, Arzneim. Forsch., <u>36</u>, 1329, (1986). c) J.A.Baldwin, A.Clameron, P.K.Lumma, D.E.McClure, S.A.Rosenthal, R.J.Winquist, E.P.Farson, G.J.Kaczorowsky, M.J.Trumble and G.M.Smith, J. Med. Chem., <u>30</u>, 690, (1987). d) For a review on pharmacological activities see for ex.: F.R. Buhler (Ed.), J. Cardiovasc. Pharmacol., 6, (Suppl. 7), S929-S1113, (1984).

5. H.Kühnis, Eur.Pat. Appl. 111453; Chem. Abstr. 101, 151762, (1984).

6. P.Čupka and J.Svetlík, Synthetic Commun., 16, 529, (1986).

7. Experimental conditions: equimolar amounts of X-substituted-benzaldehyde and ethyl 4-chloroacetoacetate were refluxed in benzene (2-4 hrs) in presence of 10% mol. equiv. piperidine acetate, with azeotropic removal of water.

8. A.Kurfürst and J.Kuthan, Collect. Czechoslovak Chem. Commun., 48, 1422, (1983).

9. Single crystals of $\underline{7a}$ suitable for X-ray diffraction study were grown from a saturated MeOH solution containing 2% triethylamine.

Crystal data of $\underline{7a}$: $C_{18}H_{19}CIN_2O_6$ M_r= 394.81. Cell parameters were obtained by fitting 25 reflections in the range 16< \approx 25°: a=15.343(2), b=14.974(2), c=8.505(1)Å, $\beta=104.11(1)^\circ$, V=1895.0(4)Å³, monoclinic P2₁/c Z=4, D_X=1.384 gcm⁻³, $\mu=2.3$ cm⁻¹, F(000)=824, room temperature. 4338 unique reflections were collected up to $\theta=27.5^\circ$ on a Nonius CAD4 diffractometer with graphite monochromated MoK α radiation $\lambda=0.71069Å$. Three standard reflections do not show any decay; corrections for Lorentz and polarization effects were applied. 2893 data with I> $\sigma(I)$ were as being considered observed and used in structure analysis. Selected bond distances in Å: (numeration according to ORTEP-Fig.1) N(1)-C(2) 1.392(3), N(1)-C(6) 1.372(3), C(2)-C(3) 1.497(3), C(2)-C(7) 1.319(3), C(3)-C(4) 1.544(3), C(4)-C(5) 1.514(3), C(5)-C(6) 1.363(3).

10. a) Some examples of this structure may be found in natural products, see for example indole alkaloid chartellamide A and B [U.Anthoni, K.Bock, L.Chevolot, C.Larsen, P.H.Nielsen and C.Christophersen, J. Org. Chem., <u>52</u>, 5638, (1987)]. b) Duhamel and coworkes studied the preparation and metal exchange reaction of simple β -halogeno enamines [see for ex.: L.Duhamel and J.M.Poirer, J. Am. Chem. Soc., <u>99</u>, 8356, (1977); L.Duhamel and J.M.Poirer, J. Org. Chem., <u>44</u>, 3585, (1979); see also: D.Scholz and H.G.Viehe, Chimia, <u>29</u>, 512, (1975)].

11. Baxter and coworkers described diethyl 2-hydroxy-2-trifluoromethyl-4-(substituted-phenyl)-6-methyl-1,2,3,4-tetrahydropyridine-3,5-dicarboxylic acid. Dehydration to 1,4-dihydropyridine is obtained by means of trifluoroacetic anhydride. A.J.G.Baxter, J.Dixon, K.J.Gould, T.McInally and A.C.Tinker, Eur.Pat. Appl. 125803; Chem. Abstr. <u>102</u>, 203874, (1985).

(Received in UK 5 October 1988)