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Abstract 

Cytoxazone, a novel eytokine modulator, and its stereoisomers were stereoselectively synthesized via 
stereocontrolled introduction of an azide group and direct construction of the 2-oxazolidinone ring from an 
azide carbonate by reductive cyclization. © 1999 Elsevier Science Ltd. All rights reserved. 
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Cytoxazone (1), produced by Streptomyces sp., is a novel cytokine modulator, which 
interferes with the cytokine IL-4, IL-10 and IgG production by selective inhibition of the 
signaling pathway of Th2 cells [1]. The structure of 1 includes a 4,5-disubstituted 2- 
oxazolidinone ring, which is rare in microbial metabolites. The absolute configuration of 1 was 
determined to be 4R,5R on the basis of the comparison of the CD spectra with those of (R)- and 
(S)-4-phenyl-2-oxazolidinones. In this paper, we report the enantioselective total syntheses of 
cytoxazone (1), 4-epi-cytoxazone (2), and their enantiomers, and the establishment of the 
absolute configuration of natural cytoxazone [2]. 

Our synthetic strategy for cytoxazone (1) and 4-epi-cytoxazone (2) is summarized in Scheme 
1. Although 2-oxazolidinone rings are typically synthesized from the corresponding amino 
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alcohols [3], our synthesis of the 2-oxazolidinone ring in 1 and 2 is designed on direct 
construction from azide carbonates 3 and 4 by reduction of azide to amine and subsequent 
cyclization. The key step for the syntheses of 1 and 2 is the regio- and stereoselective 
introduction of an azide group into a common synthetic intermediate diol 5 to give ~-azide 3 
and ¢t-azide 4, respectively. The diol 5 would be obtained from ethyl p-methoxycinnamate (6) 
with high enantioselectivity by the Sharpless catalytic asymmetric dihydroxylation [4]. 

(4R,5R)-Cytoxazone (1) was synthesized starting from ethyl p-methoxycinnamate (6) [5] as 
shown in Scheme 2. The asymmetric dihydroxylation of 6 with AD-mix-o~ in t-BuOH/H20 
gave an optically pure diol (93%, 99% ee) [6], which was subjected to reduction with NaBH4 
followed by protection with t-butyldiphenylsilyl chloride (TBDPSCI) to afford (4S,5S)-diol 7 
(cytoxazone numbering) in 65% yield. Neither p-methoxycinnamyl alcohol nor its silyl ether 
derivative was appropriate for the synthesis of 7, because these asymmetric dihydroxylations 
proceeded with low enantiomeric excess [7]. For regioselective introduction of an azide group 
into the diol 7 with inversion of stereochemistry, we investigated a nucleophilic substitution of 
a cyclic sulfite [8]. The treatment of 7 with SOC12 in the presence of Et3N [9] produced cyclic 
sulfite 8 in 99% yield as a 1.4:1 diastereomeric mixture due to the stereogenic sulfur atom. The 
sulfite 8 was treated with LiN3 in DMF at 70 °C to afford azide alcohol 9 (74%) and desilylated 
azide diol 9' (24%), which was quantitatively converted to 9 by TBDPSC1/imidazole treatment. 
In this azide substitution reaction, complete regio- and stereoselectivities were achieved. To 
construct the 2-oxazolidinone ring, the azide alcohol 9 was converted to phenyl carbonate 10b 
by treatment with C1CO2Ph/pyridine. The construction of the oxazolidinone ring was 
performed in one pot; i.e,, upon treatment of 10b with Ph3P in THF/H20, the azide reduction 
and cyclization took place simultaneously to give the desired 2-oxazolidinone 11 in 90% yield 
[10]. Finally, removal of the TBDPS group of 11 with tetrabutylammonium fluoride gave 
(4R,5R)-cytoxazone (1) in 96% yield. The 1H NMR spectrum and the optical rotation of the 
synthetic 1 were identical with those of natural cytoxazone (1)[12]. Therefore, the absolute 
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configuration of cytoxazone was established synthetically. 
We next examined the synthesis of 4-epi-cytoxazone (2) from the common intermediate 7 

(Scheme 3). For this purpose the introduction of an azide group at the C-4 position of 7 requires 
retention of stereochemistry, which is usually achieved by a stepwise double inversion process 
of bromination and azidation [13,14]. We have developed an efficient one-step method for the 
stereoselective azidation. Thus, (4S,5S)-di(ethylcarbonate) 12a, prepared from (4S,5S)-diol 7 
with CICO2Et/pyridine, was treated with TMSN3 (6 eq.) in the presence of TMSOTf (2 eq.) in 
MeCN at -43 °C to afford a 6:1 mixture of the desired ~-azide 13a and its 13-isomer 10a. In 
order to investigate this stereoselective reaction, the stereoisomer (4R,5S)-di(ethylcarbonate) 14 
was also subjected to the same reaction conditions, which gave almost the same result as that of 
12a, giving the oc-azide 13a as the predominant isomer. These results show that the present 
stereoselective azidations proceed without stereospecificity through the same oxonium ion 15 
as a reaction intermediate. After several attempts to improve the stereoselectivity, the best result 
for the azidation was obtained using (4S,5S)-di(phenylcarbonate) 12b, prepared from 7 with 
CICO2Ph/pyridine. Thus, the treatment of 12b with TMSN3 (6 eq.) in the presence of TMSOTf 
(2 eq.) in EtCN/MeCN (2:1) at -50 °C gave a 9.5:1 mixture of ¢z-azide 13b and 13-azide 10b in 
99% yield. The desired 0¢-azide 13b was treated with PPh3 in THF/H20 to give 2- 
oxazolidinone 16 [15], which was successfully converted to 4-epi-cytoxazone (2) in 99% yield 
by using tetrabutylammonium fluoride [ 16]. 

Utilizing the developed synthetic routes, we have also synthesized ent- and 5-epi- 
cytoxazones, the enantiomers of 1 and 2, respectively, by use of AD-mix-l~ in the asymmetric 
dihydroxylation. 
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Scheme 3 

In summary, we have accomplished the stereoselective syntheses of cytoxazone (1), 4-epi- 
cytoxazone (2), and their enantiomers by the stereocontrolled introduction of an azide group 
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and the direct construction of the 2-oxazolidinone ring from an azide carbonate. The biological 
activities of cytoxazone and its stereoisomers are under investigation. Work on the syntheses of 
cytoxazone derivatives is also in progress. 
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