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A convenient synthesis of 2-nitroindoles
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Abstract—The reaction of 2-iodo- and 2-bromoindoles with silver nitrite in aqueous acetone affords the corresponding 2-nitro-
indoles in modest to good yields.
� 2004 Elsevier Ltd. All rights reserved.
Both 2- and 3-nitroindoles are important building
blocks for the synthesis of pyrrolo[2,3-b]indoles and pyr-
rolo[3,4-b]indoles, via the Barton–Zard pyrrole synthe-
sis1 and 1,3-dipolar cycloaddition reactions with
mesoionic münchnones.2 These electron-deficient
indoles also undergo normal–demand Diels–Alder reac-
tions leading to carbazoles3 and nucleophilic addition
reactions.4

Whereas 3-nitroindoles are readily obtained by standard
electrophilic nitration of N-protected indoles,5 the syn-
thesis of 2-nitroindoles is less straightforward. Indeed,
2-nitroindole was an unknown compound when we
began our work in this area.6

Our original synthesis of 2-nitroindoles involved a four-
step sequence from 2-nitrobenzaldehyde (1) (Scheme 1).6

Unfortunately, the carcinogenic solvent HMPA is neces-
sary for best results in the reaction of 1 with sodium
azide, and the intermediate 2-azido-b-nitrostyrene (2)
is a powerful skin and eye irritant not unlike �pepper
spray� (�CS�, 2-chlorobenzalmalonitrile). Thermolysis of
2 in xylenes gives 2-nitroindole (3) in 54% yield. Quin-
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tard and co-workers have reported the ipso-nitration
of 2-stannylindoles to afford 2-nitroindoles in moderate
yields (30–48%).7 In an alternative approach to 2-nitro-
indoles, we found that C-2 lithiated indoles 5 can be
quenched with dinitrogen tetroxide (N2O4) to give 2-
nitroindoles 6 in 63–78% yields (Scheme 2).8 This
�melt-and-react� process is technically difficult to per-
form and dinitrogen tetroxide is a very expensive gas.
Other potential sources of NO2

+ failed to yield 2-
nitroindoles.

Prompted by an early report on the conversion of 2-bro-
mofurans to 2-nitrofurans with silver nitrite,9 we now
describe a new synthesis of 2-nitroindoles using silver ni-
trite that avoids the above problems. Thus, the reaction
of 2-haloindoles with silver nitrite in aqueous acetone
gives the corresponding 2-nitroindoles in variable yield
(Scheme 3 and Table 1).10 The products obtained are
highly pure and the recovered starting materials can be
recovered and reused.

The reaction works best for N-ethoxycarbonyl-substi-
tuted indoles 7 and 11, but less well for the more
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Table 1. Synthesis of 2-nitroindoles from 2-haloindoles with silver

nitrite

2-Haloindole X PG Product Yield (%)

7 I CO2Et 1410 52a

8 I SO2Ph 1511 10b

9 I Me 1612 5c

10 I Boc 313 57c

11 Br CO2Et 14 63d

12 Br SO2Ph 15 5e

13 Br Boc — 0c

a 33% of 7 was recovered.
b 80% of 8 was recovered.
c No starting material was recovered.
d 20% of 11 was recovered.
e 80% of 12 was recovered.
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electron-withdrawing N-phenylsulfonyl-substituted in-
doles 8 and 12. The N-Boc-substituted 2-iodoindole 10
gives N-deprotected 2-nitroindole (3) in 57% yield, rep-
resenting a superior synthesis of 2-nitroindole. The reac-
tion of 2-iodo-1-methylindole (9) affords only a low
yield of 1-methyl-2-nitroindole (16) because of the ex-
treme instability of this particular 2-iodoindole. Like-
wise, attempted reaction of N-Boc-2-bromoindole 13
under the usual conditions leads to decomposition of
labile 2-bromoindole. The N-ethoxycarbonyl group
possesses the ideal blend of providing stability for the
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2-haloindole and reactivity for the replacement reac-
tion.14 The reaction of 3-bromo- and 3-iodoindoles with
silver nitrite does not give the corresponding 3-nitro-
indoles and starting materials are recovered. Likewise,
the reactions of 8 with both sodium nitrite in place of
silver nitrite and sodium nitrite/silver nitrate return only
starting material. Likewise, there was no reaction of 8
with silver cyanide.

A possible mechanism for this reaction is shown in
Scheme 4. Initial p-complexation is followed by forma-
tion of the C-3 silver r-complex 17. Addition of nitrite
to C-2 and loss of silver halide affords the 2-nitroindole.
Some related chemistry is worth noting. The formation
of 1-nitroisoquinoline from the reaction of isoquinoline
with acetic anhydride, DMSO, and potassium nitrite has
been reported,15 and the reaction of 3-iodoindole with
silver acetate in acetic acid affords indoxyl acetate.16

The use of silver(I) to induce cyclizations of amino
allenes and amino alkynes to form nitrogen heterocycles
has been described,17 and the silver(I)-induced rear-
rangements of strained sigma bonds is well known.18

Noteworthy is that a pyrrole iminium ion analogous
to 17 has been proposed recently.17f Moreover, silver ni-
trite in aqueous acetone converts primary alkyl halides
to nitroalkanes.19

The requisite 2-haloindoles 7–13 were prepared as sum-
marized in Scheme 5.20 All are known compounds
except 2-bromo-1-ethoxycarbonylindole (11). The excel-
lent Katritzky–Bergman method for synthesizing 2-iodo-
indole (18) and 2-bromoindole (19)21 was used to
prepare 7, 9, 11–13, and 2-haloindoles 8 and 10 were
synthesized from the corresponding N-protected
indoles.

In summary, 2-nitroindoles 3 and 14 are conveniently
synthesized from suitable 2-haloindoles (7, 10, and 11)
by reaction with silver nitrite in aqueous acetone.
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