966 Communications SYNTHESIS

A New Method for the Synthesis of Unsymmetric Azines: Alkylidene Group Exchange between Azines and Imines

J. BARLUENGA, S. FUSTERO, N. GÓMEZ, V. GOTOR

Departamento de Química Orgánica, Facultad de Química, Universidad de Oviedo, Spain

Exchange reactions between iminic compounds are known but scarcely found in the literature 1.2 and rarely provide a process of interest from the synthetic point of view³. In this context we report our results on the reaction of azines unsubstituted at the imino nitrogen atom.

Symmetric azines $6 (R^3 = R^4)$ and unsymmetric azines 3 and 6 $(R^3 + R^4)$ are obtained in good yields in a simple process, which involves one or two steps, respectively, by reacting azines derived from aliphatic aldehydes or ketones 1 (R1 R^2 = H, alkyl) with imines 2 or 4 derived from aryl ketones⁴ (R³, R⁴=alkyl, aryl) in dioxan solution at 100 °C using trifluoroacetic acid as the catalyst in a 1:1:0.05 molar ratio (Table 1). It is noteworthy that aryl substituted alkylidene groups in azines 3 do not participate in the exchange reaction. This enables a direct route to the unsymmetrical compounds as indicated in the transformation of 3 into 6 (see Scheme).

Azines are usually synthesised by reaction of carbonyl compounds with hydrazine or hydrazones⁵. While the symmetrical

compounds are easily obtained in this manner, the method fails totally or partially when the preparation of the unsymmetrical azines is attempted⁶, except for hydrazones of diaryl ketones. However, more complex procedures for unsymmetric azines are known⁷. For the above reasons our procedure should be the one of choice for some of these compounds.

Table 1. Azines 3 and 6 (R¹=CH₃) from Imines 2 and Azines 1

Prod No.		\mathbb{R}^3	\mathbb{R}^4	Reaction Time [h]		m.p. [°C] or b.p. [°C]/torr	
						found	reported
3a	CH ₃	<i>n</i> -C ₃ H ₇		4	76	74°/0.01	
3b	CH_3	C_2H_5		3	83	66°/0.01	MANAGE
3c	CH ₃	C_6H_5		6	90	97°/0.01	148~150°/0.4 ⁸
3d	**	C_2H_5		4	80	83°/0.01	
3e		C_6H_5		5	80	109°/0.01	135°/18
3 f	н	C_2H_5		6	71	81°/0.01	Millioned
6a	CH ₃	C ₆ H ₅	C ₂ H ₅	8	80	76-78°	77~79°
6b	.,	C_6H_5	C_0H_5		75	163-164°	163-165°5.8
6c	.,	C_2H_5	C_2H_5		78	66-68°	66-67°8
6d	H	C_2H_5	C_2H_5		75	66-68°	66-67°8

Table 2. Characterisation of Compounds 3 and 6

Prod- uct	Molecular Formula	l.R. (film) $v_{C=N}$ [cm $^{-1}$]	¹H-N.M.R. (CDCl ₃ /TMS _{int}) δ [ppm]			
3a	C ₁₃ H ₁₈ N ₂ 1640 (202.3)		0.8-1.1 (t, CH ₃); 1.3-1.7 (m, CH ₂); 1.9 (s, CH ₃); 2.1 (s, CH ₃); 2.6-2.9 (t, CH ₂); 7.3-8.0 (m, H _{arom})			
3b	$C_{12}H_{16}N_2$ (188.3)	1630	0.9-1.2 (t, CH ₃); 1.9 (s, CH ₃); 2.1 (s, CH ₃); 2.6-3.0 (q, CH ₂); 7.3-8.0 (m, H _{avom}) 1.96 (s, CH ₃); 2.02 (s, CH ₃); 7.1-7.8 (m, H _{arom})			
3c		1645				
3d	$C_{13}H_{18}N_2$ (202.3)	1638	0.95-1.15 (t, CH ₃); 1.1-1.3 (t, CH ₃); 1.9 (s, CH ₃); 2.2-2.6 (q, CH ₂); 2.6-3.0 (q, CH ₂); 7.3-8.6 (m, H _{arem})			
3e	** Material	1650 0.85-1.04 (t, CH ₃); 1.90 CH ₃); 2.14-2.40 (q, CH ₂); 7.7 (m, H _{nrom})				
3f	$C_{11}H_{14}N_2$ (174.2)	1640	0.9-1.2 (t, CH ₃); 2.1 (d, CH ₃) 2.75-3.10 (q, CH ₂); 7.1-8.0 (m H _{arom}); 7.7-7.9 (q, CH)			
6a		1600, 1575	1.0-1.3 (t, CH ₃); 2.8-3.2 (q CH ₂); 7.1-7.8 (m, H _{arom})			
6b 6c, d		1595, 1575 1610	7.1-7.8 (m, H _{arom}) 1.0-1.3 (t, CH ₃); 2.7-3.1 (q CH ₂); 7.2-8.0 (m, H _{aror})			

^a Satisfactory microanalyses obtained for all products: C ±0.24, H ± 0.09 , N ± 0.16 .

Azine (3c) Derived from Acetone and Benzophenone:

Trifluoroacetic acid (0.1 g, 1 mmol) is added under argon to a mixture of 1 ($R^1 = R^2 = CH_3$; 2.24 g, 20 mmol) and 2 ($R^3 = C_6H_5$; 3.62 g, 20 mmol) in dioxan. The mixture is heated at 100 °C for 6 h, hydrolysed with 1 normal aqueous potassium hydroxide (100 ml) and then extracted with ether $(2 \times 60 \text{ ml})$. The dry organic layer is evaporated and the oily residue distilled; yield: 4.24 g (90%); b.p. 97-98 °C/0.01 torr (Lit.8, b.p. 148-150 °C/0.4 torr).

$C_{16}H_{16}N_2$	calc.	C 81.37	H 6.79	N 11.87	
(236.3)	found	81.13	6.75	11.99	

1.R. (film): v = 1645, 790, 715 cm⁻¹.

¹H-N.M.R. (CDCl₃/TMS_{int}): $\delta = 1.96$ (s, CH₃); 2.02 (s, CH₃); 7.1–7.8 ppm (m, H_{arom}).

M.S.: $m/e = 236 \text{ (M}^+\text{)}.$

Received: February 26, 1982 (Revised form: April 20, 1982)

0039-7881/82/1132-0967 \$ 03.00

© 1982 Georg Thieme Verlag · Stuttgart · New York

¹ G. Tóth, I. Pinter, A. Messmer, Tetrahedron Lett. 1974, 735.

² J. Barluenga, N. Gómez, V. Gotor, S. Fustero, in preparation.

W. Merz, German Patent (DBP) 1222042, Bayer AG (1966); C. A. 65, 13604 (1966).

⁴ P. L. Pickard, T. L. Tolbert, J. Org. Chem. 26, 4886 (1961).

⁵ D. Kolbah, D. Korunčev, in: Houben-Weyl, Methoden der organischen Chemie, 4th Edn., E. Müller, Ed., Vol. 10/2, Georg Thieme Verlag, Stuttgart, 1967, p. 89 ff.

⁶ For instance, in the reaction between propiophenone (1 mol), $(R^3 = C_2H_5)$ and hydrazine hydrate (1 mol) followed by treatment of the resulting hydrazone with an excess of acetone, the unsymmetrical azine **3b** was obtained in only 24% yield.

⁷ Ref.⁵, pp. 107-111.

B. V. Ioffe, A. P. Kochetov, Zh. Org. Khim. 6, 36 (1970); C. A. 72, 78 305 (1970).

R. D. Gareev, A. N. Pudovik, Khim. Elementorg. Soedin 1976, 111; C. A. 85, 159304 (1976).

⁸ J. Elguero, R. Jacquier, C. Marzin, Bull. Soc. Chim. Fr. 1968, 713.