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ABSTRACT

We have completed the total synthesis of natural ( +)-tubelactomicin A (1), a 16-membered macrolide antibiotic. This Letter presents a highly
efficient synthesis of the upper-half segment (C14 −C24) and the completion of the total synthesis featuring a high-yielding Stille coupling for
the connection of the upper-half and lower-half segments and Mukaiyama macrolactonization for the construction of the entire structure of 1.

The biological properties1aand structural uniqueness1b of (+)-
tubelactomicin A (1) (Scheme 1), isolated recently from the
culture broth of an actinomycete strain designated MK703-
102F1, prompted us to attempt its total synthesis. Along the
retrosynthetic analysis shown in Scheme 1, we describe in
the preceding paper2 the stereoselective synthesis of the
lower-half segment (C1-C13), a highly functionalizedtrans-
fused octahydronaphthalene carboxylic acid3, based on the
intramolecular Diels-Alder strategy. In this Letter, we
describe a synthesis of the upper-half (C14-C24) segment
2, an (E)-vinylstannane including anR,â-disubstituted (Z)-
acrylic acid part, and the connenction of the upper-half
segment2 and lower-half segment3. These two segments
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Scheme 1. Retrosynthetic Analysis of1
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could be connected sequentially by sp2-sp2 Stille coupling
to form a single bond between C13 and C14 and then by
intramolecular esterification at the carboxylic acid (C1) and
a hydroxyl group at C23 to form the 16-membered macro-
lactone structure, providing a ptotected form of tubelacto-
micin A. Deprotection would complete the total synthesis.

The synthesis of the upper-half segment2 is outlined in
Schemes 2 and 3. Methyl (R)-lactate (4) was converted into

ethyl (2E,4R)-4-(tert-butyldiphenylsilyloxy)-2-pentenoate (5)
using the Roush-Masamune variant3 of Horner-Emmons
elongation. The unsaturated ester part in5 was reduced,
providing a partially protected 1,4-pentanediol6 by hydro-
genation, followed by diisobutylaluminum hydride (Dibal-
H) reduction. The hydroxyl group in6 was replaced by a
cyano group via the iodo derivative, providing a hexanenitrile
derivative7. Dibal-H reduction of7 gave aldehyde8, which
was subjected to a Morita-Baylis-Hillman reaction4 with
methyl acrylate and 1,4-diazabicyclo[2.2.2]octane (DABCO)

in the presence of MeOH.5,6 The resultingR-substituted
acrylic acid ester9 was obtained as a 1:1 diastereomeric
mixture (1H NMR analysis). Treatment of the mixture9 with
NBS and Me2S provided the (Z)-acryloyl ester10 stereose-
lectively, which bears a bromomethyl group at theR-position,
as a result of an SN2′ substitution of a bromide ion.7 The
allylic bromide10 was converted into the allylic alcohol11
by hydrolysis in aqueous 1,3-dimethyl-3,4,5,6-tetrahydro-
2(1H)-pyrimidinone (DMPU) under buffered conditions.8 A
two-step reduction/oxidation applied to the ester functionality
in 12, thetert-butyldimethylsilyl (TBS) ether of11, provided
the unsaturated aldehyde13.9

Next, the contiguous stereogenic centers at C16 and C17
were introduced by a boron-mediatedsyn-stereoselective

(3) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.;
Masamune, S.; Roush, W. R.; Sakai, T.Tetrahedron Lett. 1984, 25, 2183-
2186.
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1972;Chem. Abstr.1972, 77, 34174q. For a recent review on this subject,
see: Basavaiah, D.; Rao, A. J.: Satyanarayana, T.Chem. ReV. 2003, 103,
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(5) Although a higher yield (92%) was realized when this reaction was
carried out in neat DABCO, the reaction was completed after 30 days at
room temperature. The coexistence of MeOH remarkably reduced the
reaction time. We confirmed that 3-hydroxyquinuclidine (neat) also
accelerates the reaction without a loss of the yield of9.
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(9) In the NOE experiment of13, a remarkable (22%) signal enhancement
of the CHO proton was observed when theâ-vinyl proton was irradiated.
Thus, the geometrical structures of11-13 were ascertained.

Scheme 2. Synthesis of the Upper-Half Segment (Part 1)

Scheme 3. Synthesis of the Upper-Half Segment (Part 2)
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Evans aldol reaction10 using (4R)-4-benzyl-3-propionyl-2-
oxazolidinone14.11 Protection of the hydroxyl group in the
aldol adduct15, which was followed by the reductive
removal of the chiral auxiliary in the resulting MOM ether
16, provided17. The synthesis of the upper-half segment2
from 17was achieved uneventfully by the following reaction
sequence: (1) conversion of17 into R,R-dibromoalkene18
via Dess-Martin oxidation12 and Corey-Fuchs dibromoole-
fination13 of the resulting aldehyde, followed by Bu4NF-
mediated simultaneous desilylation of the TBS ether and
dehydrobromination; (2) two-step oxidation of the resulting
primary hydroxyl group in the bromoalkyne19 to the
carboxylic acid and successive esterification; (3) desilylation
of the TBDPS group in the resluting20, which regenerates
the secondary hydroxyl group; and (4) regioselective hy-
drostannylation of21 according to Pattenden’s proce-
dure.14

With the upper-half segment2 in hand, we explored the
assembly of2 and3, taking advantage of a Stille coupling
protocol15 for the formation of the (E,E)-conjugate diene part
in 1 (Scheme 4). Treatment of2 and 3 in the presence of
Pd2(dba)3 (5% molar equiv), AsPh3 (40% molar equiv), and
CuI (20% molar equiv) at 60°C in DMF16 provided the
coupling product22 in 74% yield. The HF‚pyridine-mediated
deprotection of the SEM ester, followed by the macrolac-
tonization of the resulting seco-acid23 under Mukaiyama
conditions,17 using 2-chloro-1-methyl-pyridinium iodide24
and Et3N in refluxing MeCN, provided25 in excellent yield.
Finally, acidic removal of the MOM group in25, followed
by alkaline hydrolysis, provided1. A comparison of the
spectral data of synthetic1 (1H, 13C NMR, IR, and TLC
behaviors in two solvent systems) with those of a natural
specimen revealed that they were identical. The optical
rotation of synthetic1 [[R]20.5

D +101 (c 0.63, MeOH)]
coincided with that of the natural product [[R]25

D +103 (c
0.64, MeOH)].

In conclusion, we have completed the first total synthesis
of natural (+)-tubelactomicin A (1). The total synthesis of
1 was achieved with 54 total steps and 30 or 29 linear steps
from methyl (R)-lactate (4) or from diethyl (R)-malate in
6.2% or 4.1% overall yields, respectively.
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Scheme 4. Completion of the Total Synthesis
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