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A B S T R A C T   

New indole-tethered [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one (8a-j) and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5- 
one hybrids (9a-e) were synthesized using [4+2] cycloaddition reactions of functionalized 1,3-diazabuta-1,3- 
dienes with indole-ketenes. All molecular hybrids were structurally characterized by spectroscopic techniques 
(IR, NMR, and HRMS) and screened for their anti-pancreatic cancer activity in vitro. The [1,3,4]oxadiazolo[3,2- 
a]pyrimidin-5-one hybrids (9a-e) showed stronger anti-pancreatic cancer activity than the [1,3,4]thiadiazolo 
[3,2-a]pyrimidin-5-one hybrids (8a-j) against the PANC-1 cell line. Compound 9d bearing an ortho-chlorophenyl 
moiety emerged as the most potent anti-pancreatic cancer agent with an IC50 value of 7.7  ±  0.4 µM, much 
superior to the standard drug Gemcitabine (IC50  >  500 µM). The discovery of these [1,3,4]thiadiazolo and 
[1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids elicits their potentials as pursuable candidates for pancreatic 
cancer chemotherapy.    

Pancreatic cancer (PC) persists as one of the seven leading causes of 
cancer-related deaths worldwide.1 The mortality rate is estimated at 
2.5% and 14.8% per 0.1 million people in developing and developed 
countries, respectively.2 This indicates that PC is more frequent and 
fatal in developed countries. The death related to PC has increased by 
0.3% per year since 1975. In the year 2019 alone in the United States, 
approximately 56,770 people were newly diagnosed with PC.3 Many 
patients with PC are diagnosed at a metastatic and advanced stage, 
missing the chance for curative surgical resection. Although surgical 
resection remains the primary curative option for this disease, the 
suitability is compromised when the cancer is advanced due to poor 
prognosis.4 Moreover, radiotherapy and chemotherapy are also not 
remarkably effective for the treatment of metastatic PC.5 Thus, there is 
an urgent demand for the development of new, effective and safe 
chemotherapeutic agents against PC. 

Over the years, medicinal chemistry has provided access to chemical 
libraries bearing privileged structures, which have received increased 
attention due to their proven therapeutic relevance. Pyrimidinone, the 
most important skeleton of diazine heterocycles has attracted great 
interest in this regard due to its broad range of pharmacological ap-
plications. For instance, the pyrimidinone-based marine natural alka-
loids batzelladine A and B inhibited the binding of HIV gp-120 to CD4 

cells,6 while the synthetic derivative monastrol, a promising anticancer 
compound as mitotic kinesin inhibitor, can cross the cell membrane.7,8 

Functionalized pyrimidinones substituted at C-5 or C-6 positions have 
also exhibited diverse biological activities such as antimicrobial, and 
EGFR T790M inhibition for lung cancer treatment.9–11 Whereas fused 
bicyclic pyrimidinones are promising anti-HIV, antiviral, anti-in-
flammatory and anticancer agents.12–17 The therapeutic value of this 
scaffold is also evidenced by the different pyrimidinone-containing 
drugs approved by the US Food and Drug Administration (FDA) for PC 
chemotherapy such as gemcitabine, capecitabine, folinic acid and 
fluorouracil (Fig. 1).18 However, despite the wide availability of drugs 
for PC treatment, acquired drug resistance remains a major hurdle for 
effective therapy. Besides, the undesirable side effects of existing drugs 
due to poor selectivity necessitates the quest for new anti-PC agents. 

On the other hand, indole is a prolific scaffold that is both widely 
distributed in pharmacologically important natural products and re-
cruited as an organic synthon. The indole nucleus has also been en-
dorsed by the unique ability to mimic peptide derivatives and reversibly 
bind to proteins.19 Indole-based synthetics have also found enormous 
applications as dyes, agrochemicals, antiproliferative, anti-HIV, anti- 
inflammatory and antibacterial agents.20–26 Precisely, in anticancer 
drug discovery, indole and its derivatives have attracted considerable 
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interest not only as cytotoxins but also as bio-reductively activated 
prodrugs which effectively inhibits the growth of human pancreatic 
cancer cells.27–30 

On this backdrop, this study adopted the molecular hybridization 
(MH) strategy to synthesize conjugates of fused-pyrimidinone and in-
dole as potential anti-pancreatic cancer agents. MH has evolved as a 
preferred strategy in drug discovery, because of its proficiency to 
combine two or more biologically active moieties with a unique or 
novel mechanism of action.31 This endorses our research rationale, in 
combining the pharmacophores; fused-pyrimidinone and indole into a 
single framework using [4+2] cycloaddition reaction. The literature 
survey clearly shows that the most effective route to functionalized 
pyrimidinones is via the [4+2] cycloaddition reaction of conjugated 
1,3-diazabuta-1,3-dienes with appropriate ketene precursors.32,33 As 
part of our ongoing interest to find novel bioactive heterocyclic mole-
cules,34,35 herein, we report an efficient route for the synthesis of 
functionalized pyrimidinone-indole molecular hybrids (8a-j and 9a-e) 
by [4+2] cycloaddition reactions of different functionalized 1,3-diaza- 
1,3-butadienes with indole-ketene. Subsequently, the synthesized mo-
lecular hybrids were evaluated in vitro for their anti-pancreatic cancer 
activity. 

The reaction protocol employed for the preparation of the two series 
of indole tethered pyrimidinone molecular hybrids (8a-j and 9a-e) is 
depicted in Scheme 1. Firstly, the reaction was carried out between the 
appropriate substituted benzoic acids (1a-g) with semicarbazide or 
thiosemicarbazide (2a-b) in the presence of phosphorus oxychloride 
(POCl3) and aqueous NaOH at 90οC to afford the amine derivatives (3a- 
j and 4a-d).36 Their subsequent condensation with N,N-di-
methylformamide dimethyl acetal (DMF-Acetal) at room temperature 
resulted in the key precursors 1,3-diazabuta-1,3-dienes (5a-j and 6a- 
d).37 Separately the other precursors indoloylglycines (7a-b) were 
prepared by a base-promoted condensation of indole or 2-methyl indole 

with bromoacetic acid following our recently reported method.38 Fi-
nally, the desired pyrimidinone hybrids (8a-j and 9a-e) were synthe-
sized from the [4+2] cycloaddition reaction between 1,3,4-thiadia-
zole/oxadiazole substituted 1,3-diazabutadienes (5a-j and 6a-d) and 
indole-ketene (generated in situ from the corresponding indole acids 7a- 
b) in the presence of p-toluene sulphonyl chloride and triethylamine in 
dry dichloromethane. Different substituents placed on both the thia-
diazole- and oxadiazole-1,3-diazabutadienes did not have any remark-
able effect on the overall yields of desired products. 

The structures of synthesized hybrids were fully established by their 
spectral data (IR, NMR, and HRMS). For instance, in the 1H NMR 
spectrum of compound 8b, the pyrimidinone ring proton resonated as a 
characteristic singlet peak at δ 8.30 ppm while the two doublet signals 
at δ 7.41 (J = 3.3 Hz) and 6.75 (J = 3.0 Hz) ppm correspond to the CH 
protons of indole moiety. Other aromatic ring protons appeared at their 
respective aromatic region; the proton peak assignment was further 
supported by COSY (details in the experimental section). Furthermore, 
the appearance of a carbonyl carbon signal at δ 159.6 ppm in the 13C 
NMR spectrum (Fig. 2a) and a strong absorption peak at 1686 cm−1 in 
the IR spectrum validated the formation of the pyrimidinone core. 
These structural elucidations were further supported by HSQC and 
HMBC experiments; the selected HMBC correlations of 8b are shown in  
Fig. 2b. High-resolution mass spectrometry (HRMS) showed a mole-
cular ion peak at (M + Na) m/z 444.9732. 

Based on the empirical evidence,39 the [4+2] cycloaddition reac-
tion of 1,3-diazabuta-1,3-dienes (4π component) with indole-ketene 
(2π component) proceeds via the nucleophilic addition of N1 in 1,3- 
diazabuta-1,3-dienes (5a-f and 6a-d) to the carbonyl group of ketene 
(7a-b), which leads to a zwitterionic intermediate (I) (Scheme 2). The 
intermediate I then rearranges to dipolar intermediate (II), which after 
ring closure and elimination of N,N-dimethyl amine (HN(CH3)2) af-
forded the desired products (8a-j and 9a-e) in good yields. 

The potentials of compounds 8a-j and 9a-e as anti-pancreatic cancer 
agents were evaluated using the PANC-1 cell line. The cells were treated 
with various doses of the test compounds for 48 h, and cell survival was 
determined. The results are illustrated in Fig. 3 and Table 1. 

Based on the MTS cell viability data, the [1,3,4]oxadiazolo[3,2-a] 
pyrimidin-5-ones (9a-e) were stronger cytotoxic agents than the [1,3,4] 
thiadiazolo[3,2-a]pyrimidin-5-ones (8a-j) against PANC-1 cell line. The 
cytotoxicity of compounds 8a-j and 9a-e was dependent on the type of 
substitutions at different positions on the phenyl ring of [1,3,4]thia-
diazolo and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one moieties. The 
[1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one derivatives 9a, 9b, 9c, 9d and 
9e showed moderate to potent anticancer activity with IC50 values of 
21.1  ±  0.5, 94.9  ±  1.3, 90.5  ±  2.0, 7.7  ±  0.4 and 40.0  ±  1.1 µM, 
respectively (Table 1). 

Overall, the ortho-chlorophenyl analogue (9d) emerged as the most 
promising anti-pancreatic cancer agent with an IC50 value of 
7.7  ±  0.4 µM and was several-folds more potent as compared to the 

Fig. 1. Pyrimidinone-containing drugs.  

Scheme 1. Synthesis of pyrimidinones via [4+2] cycloaddition reaction.  
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standard drug gemcitabine (IC50  >  500 µM). Whereas compounds 9b 
and 9c with para-chloro and bromophenyl units, respectively, showed 
mild activities with IC50 values of 94.9  ±  1.3 and 90.5  ±  2.0 µM, 
respectively. The unsubstituted compound 9a also exhibited good cy-
totoxicity (IC50 = 21.1  ±  0.5 µM) while 2-methylindole compound 9e 

had relatively lower potency (IC50 = 40.0  ±  1.1 µM), albeit more 
potent than gemcitabine. Surprisingly, no significant activity (IC50 

= > 100 µM) was observed for [1,3,4]thiadiazolo[3,2-a]pyrimidin-5- 
one hybrids (8a-j) against PANC-1 cell line. These results clearly show 
that the presence of 1,3,4-oxadiazole core is crucial for potent 

Fig. 2. (a) 13C NMR and (b) HMBC correlation of 8b.  

Scheme 2. A plausible mechanism of [4 + 2] cycloaddition reaction for the formation of pyrimidinone hybrids.  

Fig. 3. Dose-dependent cell viability inhibitory effects of pyrimidinone compounds 8a-j and 9a-e on PANC-1 cells. The cells were treated with the respective 
compounds for 48 h at different doses. Then, cell viability was measured using MTS assay, and the data were analyzed using GraphPad Prism software. 
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cytotoxicity against the PANC-1 cell line as compared to 1,3,4-thia-
diazole core. The structure–activity relationship (SAR) analysis of the 
test compounds is summarized in Fig. 4. 

To sum up, the synthesis of indole linked [1,3,4]thiadiazolo and 
[1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (8a-j and 9a-e) from 
[4+2] cycloaddition reaction has been described. All the novel 

Table 1 
IC50 values of screened compounds (8a-j and 9a-e) against PANC-1 cancer cell line.        

Code Structure IC50 (µM) Code Structure IC50 (µM)  

8a > 100 8i > 100 

8b > 100 8j > 100 

8c > 100 9a 21.1  ±  0.5 

8d > 100 9b 94.9  ±  1.3 

8e > 100 9c 90.5  ±  2.0 

8f > 100 9d 7.7  ±  0.4 

8g > 100 9e 40.0  ±  1.1 

8h > 100    

Standard drug Gemcitabine  > 500    

Fig. 4. SAR analysis of fused pyrimidinone hybrids as potent anti-pancreatic cancer agents.  
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molecular hybrids were evaluated for their cytotoxicity against the 
PANC-1 pancreatic cancer cell line. [1,3,4]oxadiazolo[3,2-a]pyrimidin- 
5-one hybrids showed stronger anti-pancreatic cancer activity com-
pared to [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one hybrids. Compound 
9d bearing ortho-chlorophenyl substituent on [1,3,4]oxadiazolo[3,2-a] 
pyrimidin-5-one core displayed the most potent anti-pancreatic cancer 
activity with an IC50 value of 7.7  ±  0.4 µM superior to the para-sub-
stituted analogue 9c (IC50 = 90.5  ±  2.0 µM) and standard drug 
gemcitabine (IC50  >  500 µM). As a result, further structural deriva-
tization of these compounds is necessary to deliver compounds with 
increased efficacy and selectivity against PANC-1 and presumably, 
other pancreatic cancer cell lines which will be valuable for pancreatic 
cancer chemotherapy. 
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