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Oxazoline is known as a versatile functional group in
organic synthesis for the activation of substrates and for

asymmetric synthesis.[1] Complexation of organic compounds
having this group with transition metals may lead to the
development of unique synthetic transformations,[2] but an
olefin complex such as the one in Scheme 1 (M=metal)[3] has
not been investigated. We report here that titanation of
alkenyloxazolines proceeds nicely to give novel olefin–tita-
nium complexes (Scheme 1, M=Ti(OiPr)2), which subse-
quently allow for a diastereoselective multicomponent cou-
pling process and an asymmetric coupling reaction.

Treatment of alkenyloxazoline 2[4] with a titanium(ii)
alkoxide reagent 1 formed from Ti(OiPr)4 with two equiv-
alents of iPrMgCl,[5] generates olefin complex 3,[6] which
underwent a coupling reaction with 1-octyne (4) to give
titanacycle 6 (R=C6H13; Scheme 2). Intermediates 3 and 6
were identified by deuteriolysis.[7] The carbon–titanium bond
a to the oxazoline (rather than the vinyl–titanium bond) of 6
selectively reacted with the octanal to give, after hydrolytic

work-up, a single regioisomer 8 having exclusively an E-
olefinic bond. Surprisingly, the crude reaction mixture con-
tained this adduct 8 together with a very small amount of one
of the four possible diastereoisomers (d.r.= 96:4) arising from
the three consecutive stereogenic centers. Compound 8 could
be readily separated from this minor isomer[8] by flash
chromatography on silica gel to give a pure sample in 66%
yield. The stereochemistry of 8 was determined (as depicted)
by derivatization.[7] A stereochemical course from 2 to 8 is
proposed in the Supporting Information.[7] Analogously, the
sequential treatment of 2 with silylacetylene 5 and nonanal

Scheme 1. Generation of the olefin–metal complex.

Scheme 2. Four-component coupling process.
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afforded the adduct 9 in good yield. In place of the simple
hydrolysis, deuteriolysis or iodinolysis of the remaining vinyl–
titanium bond in the intermediate 7 (R= SiMe3) gave
deuterium-labeled and iodinated products 10 and 11, respec-
tively. Thus, the four-component coupling of the unsaturated
oxazoline, acetylene, aldehyde, and an electrophile proceeded
in one pot with nearly complete regio-, olefinic stereo-, and
diastereoselectivities to give an acyclic carbon chain of the
defined structure.[9] This and the following transformations
were made possible by the collaboration of the aforemen-
tioned feature of oxazolines and the behavior of the
olefin–metal complex.

More results regarding the transformation of Scheme 2
are summarized in Table 1. The combination of oxazoline 2,
acetylene 4 or 5, and a variety of aldehydes always showed

high diastereoselectivities (entries 1–6). The
structure of product 18 (entry 6) was also
confirmed by X-ray crystallographic analy-
sis.[7, 10] The aryl-substituted vinyloxazolines
12 and 13 also participated in the reaction
(entries 7 and 8). Entry 9 illustrates the
diastereoselective preparation of function-
alized allylsilane 21[11] from (silylvinyl)oxa-
zoline 14.[12]

While all reactions described above
started with E-alkenyloxazolines, Z-alkeny-
loxazolines such as 22[13] in Scheme 3 gave
the same product 9 previously obtained
from the E-oxazoline 2 (see Scheme 2).
Rapid isomerization of the initially formed
olefin complex 23 to less sterically con-
gested 3 via the azatitanacyclopentene 24
should account for this phenomenon. The
E-olefinic oxazolines are more readily avail-

able than the Z isomers, and hence the former are, syntheti-
cally, the substrates of choice.

Oxazoline is a potential chiral auxiliary,[1] so we next
pursued the possibility of an asym-
metric coupling reaction between
the oxazoline–titanium complex
and acetylene (Table 2). Oxazo-
lines 25–27[4] (R=Et, tBu, and iPr
groups, respectively) were used in
the reaction (entries 1–3) to eval-
uate the chiral induction by the
oxazoline substituent R. Of these
substrates, oxazoline 27 (R= iPr)
prepared from (S)-valinol showed
the most satisfactory result
(entry 3). High chiral induction of
92:8–96:4 was uniformly observed
with the valinol-derived oxazolines
27–30 to give coupling products
34–38 in good yields (entries 4–
8).[14] The stereochemistry of the
products 31 and 33 was unambigu-
ously determined as depicted by
derivatization to a known com-
pound.[7] Optically active allylsi-
lane 38[11] was easily prepared

Table 1: Diastereoselective coupling reaction of oxazolines, acetylenes, and aldehydes according to
Scheme 2.

Entry Oxazoline Acetylene Aldehyde Product
R1 R2 R3 Yield [%][a] d.r.[b]

1 Ph 2 C6H13 4 C8H17 8 66 96:4
2 Ph 2 C6H13 4 (E)-C5H11CH=CH� 15 54 88:12
3 Ph 2 C6H13 4 Ph 16 68 92:8
4 Ph 2 SiMe3 5 C8H17 9 73 93:7
5 Ph 2 SiMe3 5 iPr 17 72 90:10
6 Ph 2 SiMe3 5 Ph 18 70 95:5
7 p-ClC6H4 12 SiMe3 5 C8H17 20 62 96:4
8 1-C10H7

[c] 13 SiMe3 5 C8H17 21 60 95:5
9 SiMe3 14 SiMe3 5 C8H17 8 48 89:11

[a] Yield of the isolated pure major isomer after chromatographic separation on silica gel.
[b] Diastereoselectivity of a crude sample. Two stereoisomers were detected in the crude reaction
mixture. [c] 1-Naphthyl.

Scheme 3. Stereochemistry of the starting alkenyloxazoline.

Table 2: Asymmetric induction in the coupling of chiral oxazolines and acetylenes.

Entry Oxazoline Acetylene Product
R R1 R2 Yield [%][a] d.r.[b]

1 Et Ph 25 C6H13 4 31 65 75:25[b,c]

2 tBu Ph 26 C6H13 4 32 52 92:8[d]

3 iPr Ph 27 C6H13 4 33 72 93:7[b]

4 iPr Ph 27 SiMe3 5 34 73 92:8[b,d]

5 iPr p-ClC6H4 28 C6H13 4 35 67 96:4[d]

6 iPr p-ClC6H4 28 SiMe3 5 36 74 94:6[d]

7 iPr 1-C10H7
[e] 29 SiMe3 5 37 54 95:5[d]

8 iPr SiMe3 30 SiMe3 5 38 63 95:5[d]

[a] Yield of isolated product. [b] Enantioselectivity of the carboxylic acid produced after hydrolysis of the
oxazoline. [c] In practice, the antipode of 25 was used. [d] Diastereoselectivity of a crude sample. [e] 1-
Naphthyl.
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from (silylvinyl)oxazoline 30 with a high chiral induction
(entry 8).

The oxazoline moiety of the above products should be
useful for further transformations.[1] For example, hydrolysis
of 34 with dilute aqueous acid effected concomitant desilyl-
ation (Scheme 4) to give a 3-aryl-4-pentenoic acid 39, which is
a known precursor for the synthesis of neurokinin receptor
antagonists.[15]

In conclusion, the novel alkenyloxazoline–titanium com-
plexes proved to be a versatile template for diastereoselective
and asymmetric coupling reactions. Further investigation on
the utility of these functionalized olefin–titanium complexes
and the synthetic application of the products obtained here is
in progress.
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