
Carbohydrate Research, 123 (1983) C5-C7 Elsevier Science Publishers B.V., Amsterdam – Printed in The Netherlands

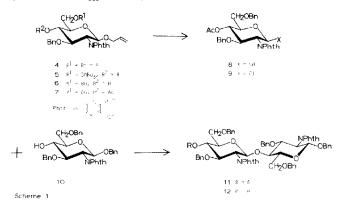
Preliminary communication

Synthesis of a protected trihexosyl unit: a glycosyl acceptor corresponding to the core structure of the N-linked glycan of a glycoprotein*

TOMOYA OGAWA**, TOORU KITAJIMA, and TOMOO NUKADA The Institute of Physical and Chemical Research, Wako-shi, Saitama, 351 (Japan) (Received July 13th, 1983; accepted for publication, July 25th, 1983)

As part of a project on the synthesis of the glycans of such glycoproteins² as 1 and 2, we describe here a synthesis of the trihexosyl glycosyl-acceptor 3, which may be regarded as a common, synthetic intermediate for both 1 and 2.

(Tributylstannyl)ation³ of 4, $[\alpha]_D$ +40.3°, to 5, and alkylation⁴ of 5 with benzyl bromide for 2 days at 90° in the presence of tetrabutylammonium bromide⁵ gave a 76% yield of the dibenzyl ether 6, $[\alpha]_D$ +33.8°***. Acetylation of 6 to give 7, $[\alpha]_D$ +64.4°, and deallylation of 7 with PdCl₂ in^{6,7} aq. AcOH--AcONa for 2 h at 70°, afforded 8,

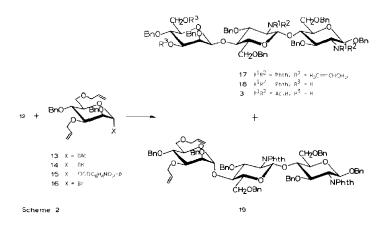

0008-6215/83/\$03.00 © 1983 Elsevier Science Publishers B.V.

^{*}Synthetic Studies on Cell Surface Glycans, Part XXIV. For Part XXIII, see ref. 1.

^{**}To whom enquiries should be addressed.

^{***}Values of $[\alpha]_D$ were measured for CHCl, solutions at 25°, unless noted otherwise. Compounds with $[\alpha]_D$ recorded gave satisfactory data for elemental analyses.

 $[\alpha]_{\rm D}$ +82.6° ($R_{\rm F}$ 0.35 in 2:1 toluene--EtOAc) in 83% yield from 6. Treatment of 8 with SOCl₂ in the presence of a catalytic amount⁸ of HCONMe₂ (DMF) in CH₂Cl₂ for 2 h at 20° gave a quantiative yield of 9, $R_{\rm F}$ 0.58 in 5:1 toluene - EtOAc, Glycosidation⁹ of 10 in the presence of AgOSO₂CF₃ and powdered molecular sieves 4A for 16 h at 20° afforded a 62% yield of the chitobiosyl derivative 11, $[\alpha]_{\rm D}$ +15.9°, $R_{\rm F}$ 0.50 in 5:1 toluene - EtOAc. Deacetylation of 11 in boiling HCl -H₂O-acetone¹⁰ for 4 days under reflux gave an 82% yield of 12, $[\alpha]_{\rm D}$ -7.8°; $R_{\rm F}$ 0.50 in 3:1 toluene--EtOAc: $\delta_{\rm C}$: 96.88 (C-1a and C-1b, ${}^{1}J_{\rm CH}$ 164.8 Hz).



Saponification of the acetate⁷ 13 in 3:3:4:1 Et₃N-THF-MeOH-H₂O for 16 h at 20° gave hemiacetal 14 ($[\alpha]_D$ +31.0°, R_F 0.45 in 2:1 toluene-EtOAc) in 85% yield; this was acylated with *p*-nitrobenzoyl chloride to give an 82% yield of 15 ($[\alpha]_D$ +52.5°, R_F 0.52 in 10:1 toluene-EtOAc) together with a 17% yield of the β anomer of 15, R_F 0.43. Treatment of 15 with HBr in CH₂Cl₂ for 20 min at 0° gave the unstable bromide 16, R_F 0.64 in 10:1 toluene-EtOAc.

Glycosidation of the dihexosyl acceptor 12 with 16 in the presence of Ag silicate¹¹ and powdered molecular sieves 4A in CH₂Cl₂ afforded a 40% yield of the β anomer 17; $[\alpha]_D - 2.1^\circ$; $R_F 0.47$ in 5:1 toluene-EtOAc; δ_C : 97.03 (C-1a and C-1b, ¹J_{CH} 164.8 Hz), 101.47 (C-1c, ¹J_{CH} 156.3 Hz), and a 36% yield of the α anomer 19; $[\alpha]_D + 15.6^\circ$; $R_F 0.53$ in 5:1 toluene-EtOAc; δ_C : 96.74 (C-1a or C-1b, ¹J_{CH} 164.8 Hz), 97.13 (C-1a or C-1b, ¹J_{CH} 164.8 Hz), and 100.11 (C-1c, ¹J_{CH} 169.7 Hz).

Deallylation of 17 with PdCl₂ in aq AcOH-AcONa for 1 h at 70° afforded a 58% yield of diol 18 ($[\alpha]_D$ -4.5°, R_F 0.55 in 2.1 toluene-EtOAc) which was treated with (1) 1:1 BuNH₂-MeOH (ref. 12) for 8 days at 90°, (2) Ac₂O--pyridine, and (3) NaOMe-MeOH, to give a 90% yield of the target structure 3, $[\alpha]_D$ -38.7°, R_F 0.47 in 3:1 CH₂Cl₂-acetone.

In conclusion, the properly protected, trihexosyl acceptor 3 was synthesized by employing regioselectively benzylated, monohexosyl synthons.

ACKNOWLEDGMENTS

We thank Dr. J. Uzawa and Mrs. T. Chijimatsu for recording and measuring the n.m.r. spectra, and Dr. H. Homma and his staff for the elemental analyses. We also thank Mrs. A. Takahashi for her technical assistance.

REFERENCES

- 1 T. Ogawa and T. Horisaki, Carbohydr. Res., 123 (1983) C1 C4.
- 2 N. Sharon and H. Lis, in H. Neurath and R. L. Hill (Eds.), The Proteins, Vol. 5, Academic Press, New York, 1982, pp. 1-144.
- 3 A. G. Davies, P. R. Paran, and S. C. Vasishtha, Chem. Ind. (London), (1967) 229-230; A. G. Davies, Synthesis, (1969) 56-64.
- 4 T. Ogawa and M. Matsui, Carbohydr. Res., 56 (1977) C1--C6; 62 (1978) C1--C4; Tetrahedron, 37 (1981) 2363 2369.
- 5 A. Veyrières, J. Chem. Soc., Perkin Trans. 1, (1981) 1626-1629.
- 6 R. Bose and R. Scheffold, Angew. Chem., 88 (1976) 578-579.
- 7 T. Ogawa and S. Nakabayashi, *Carbohydr. Res.*, 93 (1981) C1-C5; T. Ogawa, S. Nakabayashi, and T. Kitajima, *ibid.*, 114 (1983) 225-236.
- 8 M. S. Newman and P. K. Sujeeth, J. Org. Chem., 43 (1978) 4367-4369.
- 9 T. Ogawa and S. Nakabayashi, Carbohydr. Res., 97 (1981) 81-86.
- 10 R. U. Lemieux, T. Takeda, and B. Y. Chung, ACS Symp. Ser., 39 (1976) 90-115.
- 11 H. Paulsen and O. Lockhoff, Chem. Ber., 114 (1981) 3102-3114; H. Paulsen, R. Lebuhn, and O. Lockhoff, Carbohydr. Res., 103 (1982) C7-C11.
- 12 P. L. Durette, E. P. Meitzner, and T. Y. Shen, Tetrahedron Lett., (1979) 4013-4016; Carbohydr. Res., 77 (1979) C1-C4.