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The highly oxygenated 1,10-seco-eudesmanolides eriolanin
(1) and eriolangin (2, Scheme 1) isolated from the plant
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Scheme 1. Representatives of the 1,10-seco-eudesmanolides.

Eriophyllum lanatum inhibit the growth of the human KB
tumor cell line in vitro and additionally display a significant
antileukemic activity in vivo in mice.! While several synthe-
ses for racemic 1?° and one for racemic 2 have been
published,” the absolute configuration of these sesquiterpene
lactones was unknown prior to our work. Here we report an
efficient enantioselective sultone routel” to 1 and 2 that also
opens a synthetic access toward the less highly oxygenated,
cytotoxic britannilactone derivatives 3 and 4.57" As the
central intermediate, -sultone 10 (Scheme 2) was employed,
the racemic mixture of which already enabled a short and
highly diastereoselective synthesis of the 1,10-seco-eudesma-
nolide ivangulin (5).®

Alcohol 9.”) required as the starting material for the
enantiomerically pure sultone 10, was available on a multi-
gram scale by catalytic enantioselective transfer hydrogena-
tion"” of 2-bromo-1-(2-furyl)ethanone (6)!""! to 7 (> 98.5 % ee
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according to capillary GC), mild basic treatment to give
epoxide 8, and subsequent ring opening with full regioselec-
tivity and complete inversion of configuration™ (Scheme 2).
By treatment of 9 with (-chloroethanesulfonic acid chlo-
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Scheme 2. Sultone route to 1,3-diene 13. a) 0.2 mol % [Cp*RhCI((R,R)-
tsdpen)], HCO,H, Et;N, 0°C; b) K,CO;, MeCN, RT; c) MeCu(CN)Li,
Et,0, —78°C—RT, 50% over three steps; d) B-chloroethanesulfonic
acid chloride, Et;N, CH,Cl,, RT; e) cat. BHT, EtOAc, 120°C, micro-
waves, 81% over two steps; f) 1. MeLi, THF, —78°C, 2. 12, —78°C—
—20°C, 3. ICH,MgCl, THF, —78°C—RT, 61%; g) LiDBB, THF, —78°C.
BHT = 2,6-di-tert-butyl-4-methylphenol, Cp* = pentamethylcyclopenta-
dienyl, LiDBB = lithium 4,4'-di-tert-butylbiphenylide, tsdpen = N-(4-tol-
uenesulfonyl)-1,2-diphenylethylenediamine.

ride!™ and triethylamine, a mixture of 10 and a further exo
sultone isomer was formed in a domino process consisting of
elimination, esterification, and intramolecular Diels—Alder
reaction, from which pure 10 could be isolated in excellent
yield after thermal equilibration.®! Conversion of 10 to
methylenecyclohexene 13 succeeded by a sequential trans-
formation consisting of elimination, alkoxide-directed 1,6-
addition of lithiosilane 12,'*™! and desulfurization with
simultaneous methylenation in a one-pot procedure.” In a
single synthetic operation, the prefunctions for a y-lactone
were unfolded, activation for 1,4-dioxygenation was created
by virtue of the 1,3-diene, and the primary hydroxy group was
liberated for side-chain elongation.

For side-chain elongation, diol 13 was first bissilylated,
and then the primary hydroxy group was selectively depro-
tected (Scheme 3). After conversion!'’! of the resulting
alcohol 15 to iodide 16, the required C, unit was attached
by alkylation with dimethyl malonate in the presence of
proazaphosphatrane 17"%'! and demethoxycarbonylation®*"
of 18. An intramolecular protocol was eventually decisive for
the efficient generation of the enediol fragment of the target
molecules. Carboxylic acid 20, obtained after saponification
of 19, was treated successively with bis(sym-collidine)iodine())
hexafluorophosphate® followed by silver acetate in dime-
thylformamide® in a one-pot procedure, whereupon the
formyloxy e-lactone 21! was isolated as the major product.
Substitution of the formylation by a reduction®*! of the
intermediate allyl iodide should allow concise access to
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Scheme 3. Synthesis of the completely oxygenated basic skeleton 28. a) TBSCI, imidazole, DMAP, DMF, RT, 99 %,; b) TBAF, THF, 0°C, 81% 15 +
17% 13; c) I, PhsP, imidazole, THF, MeCN, —20°C—RT, 84 %, d) 17, dimethyl malonate, MeCN, RT, 91 %; €) PhSH, K,CO;, DMF, 90°C, 89 %;

f) KOH, MeOH, H,0, reflux, 100%; g) 1. I(col),PF¢, PhMe, 0°C, 2. AgOAc, DMF, PhMe, RT, 67% 21 + 15% 22; h) zinc dust, HOAc, H,O, THF,
0°C—RT, 86%; i) LiAIH,, Et,0, 0°C; j) LiBH,, Et,0, —10°C, 91 % over two steps; k) TrCl, DMAP, pyridine, CH,Cl,, RT, 91%; |) Dess—Martin period-
inane, pyridine, CH,Cl,, RT, 99%; m) TBAF, HOAc, THF, RT, 96%; n) Red-Al, CH,Cl,, PhMe, —20°C—RT, 90%; o) 1. TBAF, MS 4 A, THF, reflux,
2. KF, H,0,, NaHCO;, THF, MeOH, reflux, 99 %. col =sym-collidine, DMAP = 4-(N,N-dimethylamino) pyridine, MS =molecular sieves,

Red-Al = sodium bis(2-methoxyethoxy)aluminum hydride, TBAF =tetrabutylammonium fluoride, TBS = tert-butyldimethylsilyl, Tr =triphenylmethyl.

britannilactones 3 and 4. Iodolactone 22, which was formed in
small amounts next to 21, can be reductively eliminated® to
return 20. The undesired configuration at C6 (eudesmane
numbering) in 21 set up in a completely stereoselective
fashion during the sequential iodolactonization/allyl formiate
generation from 20 was subsequently corrected by an
oxidation/reduction strategy.””’ Reduction of diester 21 with
lithium aluminum hydride to give a hydroxy lactol® and
further reduction with lithium borohydride afforded triol 23.
Chemoselective tritylation of the two primary hydroxy groups
(—24), Dess—Martin oxidation®®” (—25), and mild desilyla-
tion® led to B-hydroxy ketone 26. Hydroxy-directed?®
reduction of the latter with the sodium aluminum dihydride
Red-Al furnished the desired 6a allyl alcohol 27 with
excellent diastereoselectivity.*” After Tamao-Fleming oxi-
dation,® ! the completely oxygenated skeleton of the target
molecules with correct configuration at all stereogenic centers
was finally available in the form of triol 28.

The final stage of the synthesis was initiated with a
chemoselective oxidation®! of triol 28 to give hydroxy y-
lactone 29 (Scheme 4). After protection of the secondary
hydroxy group, a one-step a-methylenation of lactone 30
succeeded with sodium hydride and paraformaldehyde,*® and
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following desilylation, lactone 31 was isolated in good overall
yield. Preparation® of methacrylate 32 as well as detritylation
to give 1 proceeded uneventfully and delivered (—)-eriolanin,
which proved to be identical to the natural product by
comparison of optical rotation data.”” Thus, our synthesis of 1
also clarifies the previously unknown absolute configuration
of this sesquiterpene lactone, since the absolute configuration
of 9 was unambiguously established.””’ In addition, an X-ray
diffraction analysis of our synthetic product 1 provided a
further independent proof of the absolute configuration by
anomalous X-ray scattering.®® Using a modified Yamaguchi
esterification,’! 31 could also be transformed smoothly to
angelate 33 without Z/E isomerization. Deblocking to give 2
delivered (—)-eriolangin, which also turned out to be identical
to the natural product by comparison of optical rotation
data."”

Due to the sultone strategy applied, our enantioselective
route to the 1,10-seco-eudesmanolides 1 and 2 requires only
26 steps from 2-bromo-1-(2-furyl)ethanone (6). Average
yields of 87 % for 1 and 86 % for 2 highlight the efficacy of
the route reported. Moreover, the selective manipulation of
the diverse hydroxy groups on the 1,10-seco-eudesmanolide
framework possible here offers great flexibility with respect
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Scheme 4. Final steps of the synthesis of (—)-eriolanin (1) and
(—)-eriolangin (2). a) BAIB, cat. TEMPO, CH,Cl,, RT, 759%; b) TMSCI,
imidazole, CH,Cl,, RT, 96 %,; c) NaH, paraformaldehyde, THF, 100°C
(sealed tube); d) TBAF, THF, 0°C, 61% over two steps; €) methacrylic
acid anhydride, Et;N, DMAP, THF, 0°C—RT, 85%; f) 1. angelic acid,
2,4,6-trichlorobenzoyl chloride, Et;N, PhMe, RT, 2. 31, 100°C, 60%;
g) cat. p-TsOH, MeOH, RT, 97% 1 from 32, 85% 2 from 33. BAIB=
bisacetoxyiodobenzene, TEMPO =2,2,6,6-tetramethylpiperidin-1-oxyl
(free radical), TMS =trimethylsilyl, p-TsOH = p-toluenesulfonic acid.

to the assembly of synthetic analogues. A synthesis of the
britannilactone derivatives 3 and 4 is in preparation.
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