

Letter

15 examples

up to 88% yield

15 examples up to 85% yield

Lewis-Acid-Mediated Intramolecular Trifluoromethylthiolation of Alkenes with Phenols: Access to SCF₃-Containing Chromane and Dihydrobenzofuran Compounds

Xu-Feng Song, Tong-Mei Ding, Deng Zhu, Jie Huang, and Zhi-Min Chen*

Cite This: http	ps://dx.doi.org/10.1021/acs.orgle	tt.0c02744	Read Online		
ACCESS	III Metrics & More		rticle Recommendations		Supporting Information
ABSTRACT: A thylthiolation of a	Lewis-acid-mediated intram lkenes with phenols that car	olecular trifluor offer direct acce	ome- ss to $R_{\parallel}^{\parallel}$	_	R_{1}^{n}

thylthiolation of alkenes with phenols that can offer direct access to SCF₃-containing chromane and dihydrobenzofuran compounds was disclosed for the first time. Numerous SCF₃-containing chromanes were obtained in moderate to good yields using γ -substituted 2-allyphenols as substrates. Meanwhile, various SCF₃-containing dihydrobenzofurans with oxa-quaternary centers were also delivered in moderate to good yields using β -substituted 2-allyphenols as substrates.

T he chroman skeleton is widely present in bioactive molecules, such as catechin and englitazone (Scheme 1a).¹ Accordingly, various synthetic strategies have been

developed.² Among them, the electrophilic addition/cyclization of γ -substituted 2-allyphenols to form 2,3-disubstituted chromans is a direct and efficient method. The method could introduce a transformable and useful group at the threeposition of chroman and simultaneously construct two continuous stereocenters (Scheme 1b). However, to our surprise, the successful development of this type of method remains rare.³ One of the difficulties may be that the reaction requires excellent control of the regioselectivity and diastereoselectivity to solely afford the chroman product, which is shown in Scheme 1b. The mixture of chroman and dihydrobenzofuran would be obtained if the regioselectivity was not well controlled. In addition, the relatively weak nucleophilic capability of the phenolic hydroxyl group may be a limiting factor, and the direct Friedel-Crafts reaction of the phenol moiety is a nonignorable competing reaction. So, the development of the electrophilic addition/cyclization of γ substituted 2-allyphenols to form 2,3-disubstituted chromans is still challenging. The dihydrobenzofuran moiety is also an important and usual scaffold for natural products and pharmaceutical molecules (Scheme 1a).⁴ Consequently, numerous synthetic methods for the preparation of dihydrobenzofuran compounds have been reported.⁵ Similarly, only a few examples of the electrophilic addition/cyclization of 2-allyphenols have been documented.⁶ Therefore, the development of methods for the straightforward and efficient synthesis of chromans and dihydrobenzofurans is in high demand.

-SCF₃ Lewis acid

Because it shows high lipophilicity and strong electronwithdrawing ability, introducing a SCF₃ group into compounds can make the compounds have unique chemical, biological, and physical properties.⁷ Thus SCF₃-containing compounds broadly exist in pesticides, medicine, and functional materials.⁸ The development of methods for the efficient and rapid synthesis of SCF₃-containing compounds has attracted much

Received: August 17, 2020

ACS Publications

attention, and various outstanding research works have been disclosed.9 For example, the Billard and Shen groups have independently explored some different useful SCF₃ reagents and achieved a number of fairly synthetic methods.^{10,11} The Zhao group developed a variety of novel enantioselective trifluoromethylthiolations of alkene-catalyzed chiral sulfide compounds.¹² However, trifluoromethylthiolations of alkenes with phenols to afford SCF₃-containing chromans and dihydrobenzofurans have not been reported. Considering the importance of chroman and dihydrobenzofuran units and SCF₃-containing compounds and combined with our interest in fluorine and organosulfur chemistry,¹³ we hope to study the trifluoromethylthiolations of γ -substituted 2-allyphenols to afford 2,3-disubstituted chromans and β -substituted 2allyphenols to produce dihydrobenzofurans with oxa-quaternary centers (Scheme 1c). In this Letter, we report our preliminary results.

Initially, (*E*)-cinnamylphenol (1a) was chosen as a model substrate with *N*-trifluoromethylthiosaccharin 2a (Shen's reagent) as the SCF₃ source to study the transformation for the synthesis of chromanes (Table 1). The desired product 3a

	Ph + Ph + $2a$	O J−SCF ₃ Additive, rt	d , CH₃CN►	SCF ₃ O'"Ph 3a
Ph	H 0,1 N _{SCF3} Ph ⁻ SCF 2b 2c	25 25 25 25 26 26 26 26 26 26 26 26 26 26		
entry	acid (equiv)	SCF ₃ source	additive	yield (%) ^b
1	AcCl (3.0)	2a		46
2	7 (3.0)	2a		58
3	8 (3.0)	2a		53
4	TMSCl (3.0)	2a		60
5	$BF_3 \cdot Et_2O(1.0)$	2a		
6	HCl (3.0)	2a		34
7	$CF_{3}CO_{2}H(1.0)$	2a		
8	$CH_{3}SO_{3}H(1.0)$	2a		
9	$CF_{3}SO_{3}H(1.0)$	2a		
10	TMSCl (3.0)	2b		26
11	TMSCl (3.0)	2c		
12 ^c	TMSCl (3.0)	2a	PhSePh ^c	55
13 ^c	TMSCl (3.0)	2a	$(PhSe)_2^c$	41
14 ^d	TMSCl (3.0)	2a	HFIP ^d	68
15 ^e	TMSCl (3.0)	2a	HFIP ^e	74
16 ^e		2a	HFIP ^e	

^{*a*}Reaction conditions: Unless otherwise noted, the reaction was conducted with **1a** (0.1 mmol), **2a** (0.13 mmol), and acid (0.3 mmol) in CH₃CN (1 mL) at room temperature under Ar for 24 h. ^{*b*}Isolated yield. ^{*c*}O.1 equiv of additive was used. ^{*d*}HFIP (1.0 equiv) was added.

was obtained in 46% yield when acetyl chloride (AcCl) was used as the Lewis acid in CH_3CN (1 mL) at room temperature (entry 1). It is worth mentioning that the reaction was achieved with excellent regioselectivity and diastereoselectivity. To improve the yield, a series of acids including the Lewis acid and Brønsted acid were examined (entries 2–9). The use of trimethylchlorosilane (TMSCl) gave the best result, affording the product in 60% yield (entry 4). Interestingly, only using the acids containing chloride ions could produce the desired product 3a. It could be explained that the more active compound CF₃SCl was formed in situ, which is the real SCF₃ source in this system. (For details, see the SI.) After determining TMSCl to be the acid, some other widely used SCF₃ reagents were tested, such as PhNHSCF₃ developed by Billard¹⁰ and (PhSO₂)₂NSCF₃ developed by Shen.^{11d} It was found that no better result was observed in this system (entries 10 and 11). Next, we turned our attention to the screen additive. Inspired by Zhao's work,¹⁴ diphenyl selenide (PhSePh) and diphenyl diselenide ((PhSe)₂) were first considered. However, both of the two additives resulted in decreasing the yield (entries 12 and 13). To our delight, the use of hexafluoroisopropanol (HFIP) as an additive can obviously improve the conversion and then increase the yield.¹⁵ After carefully screening the amount of HFIP, the best result was obtained, producing the product 3a in 74% yield when 10 equiv of hexafluoroisopropanol was used (entry 15). It was found that the reaction hardly happened when using only HFIP in the absence of TMSCl (entry 16). Thus we surmised that the role of HFIP is as a cooperative activator.

With the optimized conditions in hand, the generality of this tandem trifluoromethylthiolation/cyclization reaction was evaluated with a wide range of 2-allyphenol derivatives (Scheme 2). First, a number of substrates with different

^{*a*}Reaction conditions: Unless otherwise noted, the reaction was conducted with 1 (0.1 mmol), **2a** (0.13 mmol), TMSCl (0.3 mmol), and HFIP (1.0 mmol) in CH₃CN (1 mL) at room temperature under Ar. ^{*b*}Isolated yield. ^{*c*}2.5 equiv of **2a** was used.

substituents at the four-position of phenol were investigated. In general, the desired products were obtained in moderate yields (3b-g). It was found that the electron-rich substituent can improve the yield, whereas the electron-deficient substituent decreases the yield (3g vs 3f). 2-Naphthol substrate 1h is also suitable for the transformation, delivering the corresponding product 3h in 67% yield. Next, a series of substrates with different 1,2-disubstituted alkenes were subjected to the reaction (3i-n). Similarly, the substrate with an electron-rich alkene gave a higher yield than the electron-deficient alkene (3) vs 3i). The position of the substituent at the phenyl group did not obviously affect the yield (3i vs 3k). To our delight, the substrate with thiophene 11 was well-tolerated, affording the product 31 in 77% yield, but when the compound with furan 1m was used as the substrate, the desired cyclization product was hardly observed, and the product 4m was mainly obtained in 79% yield under standard reaction conditions. We speculated that ditrifluoromethylthiolation/cyclization product 3m-1 could be obtained when the amount of 2a was further increased. As expected, the product 3m-1 was produced in 42% yield using 2.5 equiv of 2a and 1m as the substrate. The substrate with nonactivated alkyl alkene 1n was examined, and the reaction still happened smoothly. It was found that SCF₃containing chroman and dihydrobenzofuran were simultaneously obtained in 78% combined yield with an approximate ratio of 1:1. Finally, normal alkyl alcohol 10 was tested, giving single 6-endo product 30 in 50% yield. It should be noted that the relative configuration of 3a was determined by X-ray crystallography.

To solely synthesize SCF₃-containing dihydrobenzofurans, we considered that the use of β -substituted 2-allyphenol as a substrate would be a better choice. Therefore, we turned our attention to exploring the trifluoromethylthiolation/cyclization of β -substituted 2-allyphenols (Table 2). It is a pity that the

Table 2. Screening of Reaction Conditions for the Synthesisof SCF_3 -Containing Dihydrobenzofurans^a

OH 5h	Ph + C	O N−SCF ₃ Additive, rt	t, CH ₃ CN	6h
entry	acid (equiv)	SCF ₃ source	additive	yield (%) ^b
1	TMSCl (3.0)	2a	HFIP	51
2	AcCl (3.0)	2a		53
3	7 (3.0)	2a		58
4	8 (3.0)	2a		56
5 ^c	7 (3.0)	2a	HFIP	64

^{*a*}Reaction conditions: Unless otherwise noted, the reaction was conducted with **5h** (0.1 mmol), **2a** (0.13 mmol), and acid (3.0 equiv) in CH₃CN (1 mL) at room temperature under Ar for 6 h. ^{*b*}Isolated yield. ^{*c*}HFIP (10 equiv) was added.

desired product **6h** was obtained in only 51% yield under the previously described standard conditions using **5h** as the substrate (entry 1). The yield was not satisfactory, and thus screening a more suitable reaction condition for this type of alkene substrate is necessary. As shown in Table 2, three Lewis acids were first conducted based on the previously described results, and the product was afforded in 58% yield when ethyloxalyl chloride 7 was used as an acid (entry 3). Adding HFIP can also promote the reaction, and the yield was increased to 64%. Other conditions have also been

investigated, but the yield was not further improved. Therefore, the conditions of entry 5 were chosen as the optimal conditions.

Subsequently, the scope of the reaction was investigated with a variety of β -substituted 2-allyphenols and 2-(2substituted ally)-1-naphthols. In general, the desired products were obtained in moderate to good yields (Scheme 3). Compared with Sh, β -substituted 2-allyphenols always gave higher yields, except for Sc (Sa-g).

Scheme 3. Substrate Scope of β -Substituted 2-Allyphenols for the Synthesis of SCF₃-Containing Dihydrobenzofurans^a

^{*a*}Reaction conditions: Unless otherwise noted, the reaction was conducted with **5** (0.1 mmol), **2a** (0.13 mmol), 7 (0.3 mmol), and HFIP (1.0 mmol) in CH₃CN (1 mL) at room temperature under Ar. Isolated yield. ^{*b*}TMSCl was used instead of 7.

Both electron-rich groups at the four-positions of phenol and alkene part gave higher yields than the electron-deficient groups (6d vs 6c and 6g vs 6f). We found that 4methoxynaphthalen-1-ol 5j gave a 67% yield, whereas when using 4-chloronaphthalen-1-ol 5i as the substrate, the yield was decreased to 44%. To our delight, the product 6k was produced in 70% yield with the use of electron-deficient substrate 5k. It is interesting that the further Friedel–Crafts product 6l-1 (34% yield), except for the desired product 6l (46% yield), was also observed using electron-rich substrate 5l. Unfortunately, product 6m was obtained in only 13% yield when nonactivated 1,1-disubstituted alkene 5m was examined. Likewise, alkene alcohol substrates 5n and 50 were also conducted, affording the corresponding products in moderate yields.

To evaluate the practicability of these two trifluoromethylthiolation/cyclization reactions, 1 mmol scale transformations of 1j and 5f were carried out, respectively. To our delight, product 3j was obtained in 83% yield, and 6f was produced in 64% yield (Scheme 4). The yields of the two reactions were basically maintained. Furthermore, a 1 g scale reaction of 1j was also performed, delivering product 3j in 83% yield.

Scheme 4. 1 mmol Scale Reactions

To gain further insight into this transformation, some ${}^{1}\text{H}$ NMR and ${}^{19}\text{F}$ NMR spectroscopy studies were performed. (For details, see the SI.) On the basis of previous works and our results, a possible mechanism for the intramolecular trifluoromethylthiolation of 2-allyphenol is proposed in Scheme 5. The active compound CF₃SCl is first formed in

Scheme 5. Proposed Mechanism

the presence of Shen's reagent 2a, HFIP, and TMSCl. (See the ¹⁹F NMR data in the SI.) HFIP may act as an activator via the hydrogen-bonding interaction and provide a proton for the formation of saccharin. (See the ¹H NMR data in the SI.) Additionally, TMSCl also can directly activate Shen's reagent 2a to form CF₃SCl. Next, compound CF₃SCl undergoes electrophilic addition to (E)-cinnamylphenol 1a, generating CF₃-substituted thiiranium ion intermediate 9a, which is attacked by a phenolic hydroxyl group, and the desired 6endo product 3a will form after further deprotonation. The collaborative process determines the excellent diastereoselectivity of this reaction. When the R² group is an aromatic ring, the substrates have a strong electronic bias for thiiranium ion opening, which could account for the excellent regioselectivity. By contrast, the substrate with an alkyl group is unbiased, so the regioselectivity of 1n is poor. For 1,1-disubstituted (whatever substituent) alkenes, the regioselectivity also results from the distinct electronic bias for the thiiranium ion opening.

In summary, we successfully developed a tandem trifluoromethylthiolation/cyclization of alkenes with phenols, which could provide a direct and modular approach to SCF_3 containing chromane and dihydrobenzofuran compounds for the first time. These two transformations feature simple and mild conditions and broad substrate toleration and are transition-metal-free. A variety of chromanes and dihydrobenzofurans were synthesized in moderate to good yields. We are investigating the catalytic enantioselective manner of this type of reaction.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.0c02744.

Experimental procedures, characterizations and analytical data of products, and NMR spectra (PDF)

Accession Codes

CCDC 2014660 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Zhi-Min Chen – School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; orcid.org/0000-0002-6988-8955; Email: chenzhimin221@sjtu.edu.cn

Authors

- Xu-Feng Song School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- **Tong-Mei Ding** School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Deng Zhu School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Jie Huang School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.0c02744

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge the NSFC (nos. 21871178, 21702135) and the STCSM (19JC1430100) for the financial support. This research was also supported by The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

REFERENCES

(1) (a) Weyant, M. J.; Carothers, A. M.; Dannenberg, A. J.; Bertagnolli, M. M. *Cancer Res.* **2001**, *61*, 118. (b) Chyu, K. Y.; Babbidge, S. M.; Zhao, X.; Dandillaya, R.; Rietveld, A. G.; Yano, J.;
Dimayuga, P.; Cercek, B.; Shah, P. K. *Circulation* 2004, 109, 2448.
(c) Valsamakis, G.; Kumar, S. *Expert Opin. Pharmacother.* 2000, 1, 1413 and references therein. (d) Shen, H. C. *Tetrahedron* 2009, 65, 3931.

(2) (a) Núñez, M. G.; García, P.; Moro, R. F.; Díez, D. Tetrahedron
2010, 66, 2089. Selected recent examples: (b) Poulsen, P. H.; Feu, K. S.; Paz, B. M.; Jensen, F.; Jørgensen, K. A. Angew. Chem., Int. Ed.
2015, 54, 8203. (c) Marcos, R.; Rodríguez-Escrich, C.; Herrerías, C. I.; Pericàs, M. A. J. Am. Chem. Soc. 2008, 130, 16838. (d) Uyanik, M.; Hayashi, H.; Ishihara, K. Science 2014, 345, 291. (e) Trost, B. M.; Shen, H. C.; Dong, L.; Surivet, J.-P.; Sylvain, C. J. Am. Chem. Soc. 2004, 126, 11966. (f) Wang, P.-S.; Liu, P.; Zhai, Y.-J.; Lin, H.-C.; Han, Z.-Y.; Gong, L. Z. J. Am. Chem. Soc. 2015, 137, 12732. (g) Chung, Y. K.; Fu, G. C. Angew. Chem., Int. Ed. 2009, 48, 2225. (h) Stadlbauer, S.; Ohmori, K.; Hattori, F.; Suzuki, K. Chem. Commun. 2012, 48, 8425. (i) Tu, M.-S.; Liu, S.-J.; Zhong, C.; Zhang, S.; Zhang, H.; Zheng, Y.-L.; Shi, F. J. Org. Chem. 2020, 85, 5403. (j) Feng, S.; Yang, B.; Chen, T.; Wang, R.; Deng, Y.-H.; Shao, Z. J.

(3) (a) Chapelat, J.; Buss, A.; Chougnet, A.; Woggon, W.-D. Org. Lett. 2008, 10, 5123. (b) Zhang, H.; Lin, S.; Jacobsen, E. N. J. Am. Chem. Soc. 2014, 136, 16485. (c) Denmark, S. E.; Kornfilt, D. J. P. J. Org. Chem. 2017, 82, 3192.

(4) (a) Donnelly, D. M. X.; Meegan, M. J. In *Comprehensive Heterocyclic Chemistry*; Katrizky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, U.K., 1984; Vol. 4. (b) Apers, S.; Vlietinck, A.; Pieters, L. *Phytochem. Rev.* **2003**, *2*, 201. (c) Ohkawa, S.; Fukatsu, K.; Miki, S.; Hashimoto, T.; Sakamoto, J.; Doi, T.; Nagai, Y.; Aono, T. *J. Med. Chem.* **1997**, *40*, 559. (d) Chan, L. F. S.; Morgan, G. N. *Eur. J. Pharmacol.* **1990**, *176*, 97. (e) Yang, J.-H.; Du, X.; He, F.; Zhang, H.-B.; Li, X.-N.; Su, J.; Li, Y.; Pu, J.-X.; Sun, H.-D. J. *J. Nat. Prod.* **2013**, *76*, 256.

(5) For selected recent examples, see: (a) Zhang, H.; Ferreira, E. M.; Stoltz, B. M. Angew. Chem., Int. Ed. 2004, 43, 6144. (b) Kuethe, J. T.; Wong, A.; Journet, M.; Davies, I. W. J. Org. Chem. 2005, 70, 3727. (c) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644. (d) Lafrance, M.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 14570. (e) Wang, X.; Lu, Y.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 12203. (f) Sheppard, T. D. J. Chem. Res. 2011, 35, 377. (g) Silva, A. R.; Polo, E. C.; Martins, N. C.; Correia, C. R. D. Adv. Synth. Catal. 2018, 360, 346. (h) Zhang, Z.; Xu, B.; Qian, Y.; Wu, L.; Wu, Y.; Zhou, L.; Liu, Y.; Zhang, J. Angew. Chem., Int. Ed. 2018, 57, 10373. (6) Some metal-catalyzed examples: (a) Nicolai, S.; Erard, S.; González, D. F.; Waser, J. Org. Lett. 2010, 12, 384. (b) Rong, Z.; Echavarren, A. M. Org. Biomol. Chem. 2017, 15, 2163. (c) Hutt, J. T.; Wolfe, J. P. Org. Chem. Front. 2016, 3, 1314. (d) Hewitt, J. F. M.; Williams, L.; Aggarwal, P.; Smith, C. D.; France, D. J. Chem. Sci. 2013, 4, 3538.

(7) (a) Hansch, C.; Leo, A.; Unger, S. H.; Kim, K. H.; Nikaitani, D.; Lien, E. J. J. Med. Chem. 1973, 16, 1207. (b) Biffinger, J. C.; Kim, H. W.; DiMagno, S. G. ChemBioChem 2004, 5, 622. (c) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308. (d) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827. (e) Landelle, G.; Panossian, A.; Leroux, F. Curr. Top. Med. Chem. 2014, 14, 941.

(8) (a) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359. (c) Manteau, B.; Pazenok, S.; Vors, J.-P.; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140. (d) Isanbor, C.; O'Hagan, D. J. Fluorine Chem. 2006, 127, 303. (e) Kajander, E. O.; Kubota, M.; Carrera, C. J.; Montgomery, J. A.; Carson, D. A. Cancer Res. 1986, 46, 2866. (f) Islam, R.; Lynch, J. W. Br. J. Pharmacol. 2012, 165, 2707. (g) Lindsay, D. S.; Dubey, J. P.; Kennedy, T. J. Vet. Parasitol. 2000, 92, 165.

(9) (a) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
(b) Toulgoat, F.; Alazet, S.; Billard, T. Eur. J. Org. Chem. 2014, 2014, 2415. (c) Shao, X.; Xu, C.; Lu, L.; Shen, Q.-L. Acc. Chem. Res. 2015, 48, 1227. (d) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731. (e) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115, 826. (f) Zhang, K.; Xu, X.-H.; Qing, F.-L. Youji Huaxue

2015, 35, 556. (g) Chachignon, H.; Cahard, D. Chin. J. Chem. **2016**, 34, 445. (h) Zhang, P.-P.; Lu, L.; Shen, Q.-L. Huaxue Xuebao **2017**, 75, 744. For selected recent examples, see: (i) Ferry, A.; Billard, T.; Langlois, B. R.; Bacqué, E. Angew. Chem., Int. Ed. **2009**, 48, 8551. (j) Yang, Y.-D.; Azuma, A.; Tokunaga, E.; Yamasaki, M.; Shiro, M.; Shibata, N. J. Am. Chem. Soc. **2013**, 135, 8782. (k) Wu, H.; Xiao, Z.; Wu, J.; Guo, Y.; Xiao, J.-C.; Liu, C.; Chen, Q.-Y. Angew. Chem., Int. Ed. **2015**, 54, 4070. (l) Yang, X.-G.; Zheng, K.; Zhang, C. Org. Lett. **2020**, 22, 2026.

(10) (a) Ferry, A. L.; Billard, T.; Langlois, B. R.; Bacque, E. J. Org. Chem. 2008, 73, 9362. (b) Glenadel, Q.; Alazet, S.; Baert, F.; Billard, T. Org. Process Res. Dev. 2016, 20, 960.

(11) (a) Shao, X.; Wang, X.-Q.; Yang, T.; Lu, L.; Shen, Q.-L. Angew. Chem., Int. Ed. 2013, 52, 3457. (b) Wang, X.; Yang, T.; Cheng, X.; Shen, Q.-L. Angew. Chem., Int. Ed. 2013, 52, 12860. (c) Xu, C.-F.; Ma, B.-Q.; Shen, Q.-L. Angew. Chem., Int. Ed. 2014, 53, 9316. (d) Zhang, P.; Li, M.; Xue, X.-S.; Xu, C.; Zhao, Q.; Liu, Y.; Wang, H.; Guo, Y.; Lu, L.; Shen, Q.-L. J. Org. Chem. 2016, 81, 7486. (e) Xu, C.-F.; Shen, Q.-L. Org. Lett. 2015, 17, 4561.

(12) (a) Liu, X.; An, R.; Zhang, X.; Luo, J.; Zhao, X.-D. Angew. Chem., Int. Ed. 2016, 55, 5846. (b) Luo, J.; Cao, Q.; Cao, X.; Zhao, X. Nat. Commun. 2018, 9, 527. (c) Liu, X.; Liang, Y.; Ji, J.; Luo, J.; Zhao, X. J. Am. Chem. Soc. 2018, 140, 4782. (d) Xu, J.; Zhang, Y.; Qin, T.; Zhao, X. Org. Lett. 2018, 20, 6384. (e) Liang, Y.; Ji, J.; Zhang, X.; Jiang, Q.; Luo, J.; Zhao, X. Angew. Chem., Int. Ed. 2020, 59, 4959.

(13) (a) Xi, C.-C.; Chen, Z.-M.; Zhang, S.-Y.; Tu, Y.-Q. Org. Lett. 2018, 20, 4227. (b) Xie, Y.-Y.; Chen, Z.-M.; Luo, H.-Y.; Shao, H.; Tu, Y.-Q.; Bao, X.-G.; Cao, R.-F.; Zhang, S.-Y.; Tian, J.-M. Angew. Chem., Int. Ed. 2019, 58, 12491. (c) Luo, H.-Y.; Xie, Y.-Y.; Song, X.-F.; Dong, J.-W.; Zhu, D.; Chen, Z.-M. Chem. Commun. 2019, 55, 9367. (d) Luo, H.-Y.; Dong, J.-W.; Xie, Y.-Y.; Song, X.-F.; Zhu, D.; Ding, T.-M.; Liu, Y.-Y.; Chen, Z.-M. Chem. - Eur. J. 2019, 25, 15411. (e) Ye, A.-H.; Zhang, Y.; Xie, Y.-Y.; Luo, H.-Y.; Dong, J.-W.; Liu, X.-D.; Song, X.-F.; Ding, T.-M.; Chen, Z.-M. Org. Lett. 2019, 21, 5106. (f) Song, X.-F.; Ye, A.-H.; Xie, Y.-Y.; Dong, J.-W.; Chen, C.; Zhang, Y.; Chen, Z.-M. Org. Lett. 2019, 21, 9550.

(14) Luo, J.; Zhu, Z.; Liu, Y.; Zhao, X. Org. Lett. 2015, 17, 3620.
(15) (a) Dherbassy, Q.; Schwertz, G.; Chessé, M.; Hazra, C. K.; Wencel-Delord, J.; Colobert, F. Chem. - Eur. J. 2016, 22, 1735.
(b) Tao, Z.; Robb, K. A.; Zhao, K.; Denmark, S. E. J. Am. Chem. Soc. 2018, 140, 3569. (c) Berkessel, A.; Adrio, J. A.; Huettenhain, D.; Neudorfl, J. M. J. Am. Chem. Soc. 2006, 128, 8421. (d) Wei, C.; He, Y.; Wang, J.; Ye, X.; Wojtas, L.; Shi, X. Org. Lett. 2020, 22, 5462.