

Subscriber access provided by Kaohsiung Medical University

Note

Direct Biomimetic Synthesis of #-Carboline Alkaloids from Two Amino Acids

Zi-Xuan Wang, Jia-Chen Xiang, Yan Cheng, Jin-Tian Ma, Yan-Dong Wu, and An-Xin Wu J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b01668 • Publication Date (Web): 22 Aug 2018 Downloaded from http://pubs.acs.org on August 22, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Direct Biomimetic Synthesis of β-Carboline Alkaloids from Two Amino Acids

Zi-Xuan Wang[†], Jia-Chen Xiang[†], Yan Cheng, Jin-Tian Ma, Yan-Dong Wu, and An-Xin Wu^{*}

Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China

E-mail: chwuax@mail.ccnu.edu.cn.

TOC Graphic:

Abstract: The increasing importance of enzyme mimics in organic synthesis inspired us to design a novel biomimetic synthesis of β -carboline alkaloids directly from tryptophan and a second amino acid. This novel one-pot protocol utilizes abundant and readily available starting materials and thus presents a green and user-friendly alternative to conventional methods that rely on stepwise synthesis. Driven by molecular iodine and TFA, decarboxylation, deamination, Pictet-Spengler reaction and oxidation reaction proceeded sequentially, transforming biomass amino acids into value-added alkaloid motifs.

 β -carboline motifs belonging to the tricyclic pyrido[3,4-*b*]indole ring system are broadly existing in natural products.¹ Members of this alkaloid family usually have diverse substituents at the positions *ortho* to the *N* atom.² Exhibiting antitumor,³ neurotoxin,⁴ cytotoxic,⁵ as well as monoamine oxidase inhibitive⁶ activities, this alkaloid family has received considerable attention from the synthetic point of view (Figure 1). Classic methods rely on separate steps for condensation, cyclization, and aromatization using tryptamine derivatives and aldehydes (Figure 1a).⁷ Alternatively, pre-installed tryptamine based amides were employed and then treated with POCl₃ to afford cyclization products.⁸ Further aromatizations were accomplished by stoichiometric DDQ,⁹ IBX,¹⁰ PhI(OAc)₂¹¹ or other oxidants including expensive metal catalyst.¹² The Banwell group reported an elegant, three-step synthesis involving cross-coupling, reductive cyclization, and aromatization (Figure 1b).¹³ Thermal electrocyclisation of the azahexatriene system was also developed as an alternative approach to the synthesis of the β -carboline backbone (Figure 1c).¹⁴ However, the use of toxic aldehydes, user-unfriendly reagents (e.g. POCl₃, Na) or relative expensive metal catalysts are not recommended from the angle of ideal synthesis.¹⁵ As a result, a facile synthesis of the β -carboline backbone with green materials, easy operation and a one-pot protocol is still desired.

The biosynthesis of β -carboline alkaloids is generally believed to proceed *via* the combination of tryptophan with a second amino acid (Figure 2a)¹⁶ by a tandem enzymatic processes.¹⁷ Considering that there is no chemical synthesis of β -carboline using two amino acids, we proposed to set oxidative, acidity, and high temperature conditions to mimic¹⁸⁻²¹ the functions of sequential decarboxylases,²² deaminases,²³ Pictet-Spenglerase,²⁴ and oxidases (Figure 2b). Herein, we report a synthesis of β -carbolines from two amino acids with a one-pot, user-friendly protocol.

Figure 2. The biosynthesis and biomimic synthesis hypothesis of β -carboline from two amino acids.

Initially, we investigated the reaction between tryptophan (1a) and phenylglycine (2a) in the presence of a green oxidant, I_2 , in DMSO, with representative results shown in **Table 1**. Since the desired β -carboline derivatives could not be obtained in the absence of other additives (entry 1), we introduced Brønsted acids into the reaction, achieving the best results in the case of TFA (entries 2–6). Lewis acids could also promote the reaction (entries 7–9), but did not lead to better results. The use of additional oxidants such as TBHP, PhI(OAc)₂, oxone, and DDQ in the presence of TFA resulted in reduced yields (entries 10–13). Finally, under optimized conditions (120 °C, 1.5 equiv. I_2), **3aa** could be isolated in 52% yield.

Table 1. Reaction Optimization.

1	1.0	-	-	110	trace
2	1.0	HCl	-	110	10
3	1.0	TFA	-	110	46
4	1.0	TsOH	-	110	21
5	1.0	TfOH	-	110	29
6	1.0	HI	-	110	trace
7	1.0	FeCl ₃	-	110	18
8	1.0	CuBr ₂	-	110	21
9	1.0	AlCl ₃	-	110	42
10	1.0	TFA	TBHP	110	36
11	1.0	TFA	PhI(OAc) ₂	110	18
12	1.0	TFA	oxone	110	trace
13	1.0	TFA	DDQ	110	trace
14	1.5	TFA	-	120	52
15	0.5	TFA	-	120	16
16	2.0	TFA	-	120	38

^aReaction conditions: **1a** (0.24 mmol), **2a** (0.2 mmol), acid and I_2 were added in solvent (3.0 mL) and stirred for 24 h. Reactions were carried out in a pressure vessel. ^bIsolated yields.

With the optimized conditions in hand, we investigated the substrate scope (Scheme 1), choosing several substituted phenylglycines to react with tryptophan. Electron-neutral **2b** smoothly reacted under the chosen conditions to afford the corresponding β -carboline **3ab** in 48% yield. Notably, the sensitive-group-bearing 2-amino-2-(4-hydroxyphenyl)acetic acid afforded **3ac** in 45% yield without requiring protection. Pleasingly, a broad range of halogenated substrates (2-F, 2-Cl, 2-Br, 4-F, 4-Cl) reacted to afford products suitable for further functionalization (**3ad–3ah**, yields of 46–56%). The reaction was not hindered by the introduction of electron-withdrawing 2-CF₃ and 3-CF₃ groups (**3ai**, 44%; **3aj**, 52%), whereas the use of aliphatic amino acids resulted in poor yields. For example, glycine afforded **3ak** norharman (a potent tremor-producing neurotoxin) in 20% yield, whereas valine cannot

furnish **3al**. The reactions of 2-aminobutanoic acid and leucine also proceeded in low yields (17 and 16%, respectively).

Reaction conditions: **1** (0.24 mmol), **2** (0.2 mmol), TFA (0.2 mmol) and I_2 (0.3 mmol) were added in DMSO (3.0 mL) and stirred at 120 °C for 24 h. Reactions were carried out in a pressure vessel. Isolated yields.

Thus, compared to the reaction of amino acids bearing a strongly electron-withdrawing aromatic ring, those of aliphatic amino acids exhibited lower reactivity in the Pictet-Spengler reaction step. Subsequently, we explored the scope of tryptophan modification. A common tryptophan analogue, 5-OH-tryptophan, afforded

4 5

6

7

8

9 10

11 12

13 14

15 16

17

18 19

20 21

22 23

24 25

26 27

28

29 30

31 32

33 34

35 36

37

38 39

40 41

42 43

44 45

46 47

48 49

50

51 52

53 54

55 56

57 58 59

60

3ba in 46% yield, and 5-Cl-tryptophan was also tolerated under the reaction conditions (3ca, 39%). Electron-rich 5-OMe-tryptophan furnished 3da in 43% yield, 3ea and 1-methyltryptophan afforded in 51% vield. Using 1-(tert-butoxycarbonyl)tryptophan as starting material, the desired product could not be obtained. Instead of that, the N-Boc cleavage product **3aa** was isolated (46%). The reaction of tryptophan methyl ester hydrochloride resulted in the formation of 3fa (50%), indicating that esterification of the carboxyl group in tryptophan blocked decarboxylation but did not hinder other reactions in the sequence. Unfortunately, an attempt to replace tryptophan with histidine was unsuccessful.

Further mechanistic insights were obtained by performing a series of control experiments (Scheme 2). Under "standard conditions", 2a afforded the expected benzaldehyde 4 in 83% yield (entry 1). However, under the same conditions, **1a** was not converted into the corresponding aldehyde **5** or dimerization product $\mathbf{6}$, affording a complex mixture of unrecognized products (entry 2). This behavior was ascribed to the sensitivity of the indole-containing backbone of 1 to oxidizing conditions in the absence of 2. The catabolism of the second amino acid has priority to take place in present of I_2 in this conversion. Treatment of 1a with 4 afforded the desired 3aa in 65% yield, confirming that **4** is a key intermediate (entry 3). According to literature, the reaction of **1a** with **4** in AcOH affords cyclic product **M**.²⁵ Under our standard conditions, M afforded **3aa** in almost quantitative yield, thus being possibly formed as an intermediate in our synthetic sequence (entry 4). Next, we investigated the effect of carboxyl groups in the substrate on the reaction outcome (entry 5). The combination of tryptamine with phenylglycine furnished product **3aa** in only 35% yield, with an even lower yield of 14% observed for tryptophan/benzylamine. Finally, no reaction was observed for the tryptamine/benzylamine combination, demonstrating that the presence of carboxyl as pre-existing functional groups in both substrates have critical for reactivity and indicating that the above conversion is promoted by decarboxylative oxidation²⁶ of amino acids.

Scheme 2. Control Experiments.

Based on our experimental results and previous reports,²⁶ we offer a putative mechanism (Scheme 3) featuring I₂-triggered decarboxylative oxidation leading to the formation of an imine intermediate. Under acidic conditions, the above intermediate is hydrolyzed to the corresponding aldehyde, with the sum of these steps operating as a formal oxidative deamination of amino acids. Subsequently, the aldehyde is trapped by tryptophan *via* the Pictet-Spengler reaction to afford a cyclic intermediate, with the following I₂-mediated NH-oxidation and decarboxylative oxidation (occurring *via* α -NH elimination and β -CH elimination, respectively) facilitating C-ring desaturation and affording β -carboline alkaloids. HI, produced as a by-product of the oxidation reaction, can be recycled back to I₂ utilizing DMSO.²⁷

Scheme 3. Mechanistic Proposal.

Conclusion

In conclusion, we described a straightforward synthesis of β -carboline alkaloids from two amino acids enzyme-mimetically. Since amino acids are easily available biomass material, this metal-free transformation is of high significance²⁸ due to its green and user-friendly nature. Compared to the traditional two step synthesis, it holds advantages in pot-economy, avoiding the use of toxic aldehydes and offering advances in concept. Moreover, the preparation of β -carboline motifs in a biomimetic way supports the hypothetical biogenetic origin of alkaloids belonging to the β -carboline family.

Experimental Section

General Methods.

Unless otherwise stated, all starting materials and catalysts were obtained from commercial suppliers and used without further purification. All new compounds were fully characterized. TLC analysis was performed using precoated glass plates. Column chromatography was performed using silica gel (200–300 mesh). IR spectra were recorded as KBr pellets with absorption in cm⁻¹. ¹H NMR spectra were recorded in CDCl₃ on 600 MHz spectrometers and resonances (δ) are given in ppm relative to TMS (internal standard). ¹³C NMR spectra were recorded in CDCl₃ or DMSO-*d*₆ on 100/150 MHz NMR spectrometers. HRMS were obtained on a 7.0T FTMS equipped

with ESI. The mass analyzer type used for HRMS measurement is TOF. Melting points were determined using an electrothermal capillary melting point apparatus and not corrected.

General procedure for the synthesis

for 3 (3aa as an example)

A mixture of tryptophan **1a** (0.24 mmol), phenylglycine **2a** (0.2 mmol), TFA (0.2 mmol), I₂ (0.3 mmol) and DMSO (3.0 mL) were added in a pressure vessel, then stirred at 120 °C for 24 h. Then added 50 mL water and 30 mL saturated brine solution to the mixture and extracted with EtOAc 3 times (3×50 mL). The extract was washed with 10% Na₂S₂O₃ solution, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (eluent: petroleum ether /EtOAc=3/1) to afford the product **3aa** as yellow solid.

▶ for 2-amino-3-(1-benzyl-1*H*-indol-3-yl)propanoic acid (*N*-Bn tryptophan).

2-amino-3-(1-benzyl-1*H*-indol-3-yl)propanoic acid (*N*-Bn tryptophan) was synthesized according to a previously known procedure.^[29]

Analytical Data for target compound

1-phenyl-9*H*-pyrido[3,4-*b*]indole (**3aa**): yield 52% (25.4 mg), compound **3aa** was reported previously;^[30] yellow solid, mp = 240–242 °C; IR (KBr) v_{max} : 2361, 1623, 1559, 1494, 1456, 1416, 1321, 1276, 1233, 736 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ 11.54 (s, 1H), 8.46 (d, *J* = 4.8 Hz, 1H), 8.26 (d, *J* = 7.8 Hz, 1H), 8.11 (d, *J* = 4.8 Hz, 1H), 8.08–7.97 (m, 2H), 7.66 (d, *J* = 8.4 Hz, 1H), 7.61 (t, *J* = 7.8 Hz, 2H), 7.54 (dt, *J* = 14.8, 7.8 Hz, 2H), 7.26 (t, *J* = 7.2 Hz, 1H).¹³C NMR (150 MHz, DMSO-*d*₆) δ 142.2, 141.1, 138.4, 133.0, 129.2, 128.8, 128.6, 128.4, 128.2, 121.6, 120.9, 119.6, 113.9, 112.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₃N₂: 245.1073; found: 245.1095.

1-(*p*-tolyl)-9*H*-pyrido[3,4-*b*]indole (**3ab**): yield 48% (24.8 mg), compound **3ab** was reported previously;^[31] yellow solid; mp = 195–198 °C; IR (KBr) v_{max} : 1624, 1562, 1496, 1320, 1278, 820, 740 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 9.06 (s, 1H), 8.49 (d, *J* = 4.8 Hz, 1H), 8.12 (d, *J* = 7.8 Hz, 1H), 7.88 (d, *J* = 4.8 Hz, 1H), 7.78 (d, *J* = 7.8 Hz, 2H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.43 (d, *J* = 8.4 Hz, 1H), 7.28–7.25 (m, 3H), 2.35 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 143.0, 140.4, 139.0, 138.6, 135.4, 133.4, 129.7, 128.3, 127.9, 121.7, 121.6, 120.0, 113.5, 111.5, 21.3. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₅N₂: 259.1230; found: 259.1229.

4-(9*H*-pyrido[3,4-*b*]indol-1-yl)phenol (**3ac**): yield 45% (23.4 mg), yellow solid; mp = 291–294 °C; IR (KBr) vmax: 1627, 1611, 1565, 1516, 1497, 1454, 1321, 1262, 1261, 1097, 1023, 842, 802, 748 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ 11.43 (s, 1H), 9.80 (s, 1H), 8.39 (d, *J* = 4.8 Hz, 1H), 8.23 (d, *J* = 7.2 Hz, 1H), 8.03 (d, *J* = 4.8 Hz, 1H), 7.89 (d, *J* = 8.1 Hz, 2H), 7.65 (d, *J* = 7.8 Hz, 1H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.24 (t, *J* = 7.2 Hz, 1H), 7.00 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 157.7, 142.3, 140.8, 137.9, 132.4, 129.5, 129.0, 128.7, 127.8, 121.3, 120.7, 119.3, 115.4, 112.9, 112.3. HRMS (ESI): m/z [M+H] ⁺ calcd for C₁₇H₁₃N₂O: 261.1022; found: 261.1023.

1-(2-fluorophenyl)-9*H*-pyrido[3,4-*b*]indole (**3ad**): yield 52% (27.2 mg), yellow solid; mp = 197–201 °C; IR (KBr) v_{max}: 1625, 1599, 1501, 1423, 1323, 1234, 832, 763, 740, 619 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ 11.44 (s, 1H), 8.48 (d, *J* = 5.4 Hz, 1H), 8.27 (d, *J* = 7.8 Hz, 1H), 8.18 (d, *J* = 5.4 Hz, 1H), 7.76 (t, *J* = 7.8 Hz, 1H), 7.62–7.57 (m, 3H), 7.47–7.39 (m, 2H), 7.26 (t, *J* = 7.2 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 160.7, 158.2, 140.7, 138.0, 137.9, 133.9, 131.6, 130.6, 130.5, 128.3, 128.2, 125.9, 125.8, 124.6, 121.6, 120.4, 119.3, 116.1, 115.9, 114.3, 112.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₂FN₂: 263.0979; found: 263.0983.

1-(2-chlorophenyl)-9*H*-pyrido[3,4-*b*]indole (**3ae**): yield 56% (31.1 mg), brown solid; mp = 198–201 °C; IR (KBr) v_{max} : 1626, 1564, 1498, 1454, 1434, 1321, 1235, 744, 619 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 8.54 (d, *J* = 5.4 Hz, 1H), 8.49 (s, 1H), 8.16

(d, J = 7.8 Hz, 1H), 8.00 (d, J = 5.4 Hz, 1H), 7.61–7.56 (m, 1H), 7.54–7.51 (m, J = 7.2 Hz, 2H), 7.43 (d, J = 8.4 Hz, 1H), 7.41-7.40 (m, 2H), 7.30 (t, J = 7.8 Hz, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ 141.3, 141.0, 137.8, 137.2, 133.9, 132.5, 131.9, 130.3, 129.8, 128.3, 127.4, 121.8, 120.7, 119.5, 114.5, 112.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₂ClN₂: 279.0684; found: 279.0685.

1-(2-bromophenyl)-9*H*-pyrido[3,4-*b*]indole (**3af**): yield 47% (30.3 mg), yellow oil; IR (KBr) v_{max} : 1626, 1600, 1563, 1498, 1454, 1321, 1236, 1018, 827, 744, 619 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆) δ 11.32 (s, 1H), 8.42 (d, *J* = 5.4 Hz, 1H), 8.27 (d, *J* = 7.8 Hz, 1H), 8.17 (d, *J* = 5.4 Hz, 1H), 7.84 (d, *J* = 8.4 Hz, 1H), 7.63–7.51 (m, 4H), 7.51– 7.46 (m, 1H), 7.30–7.21 (m, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 142.9, 140.9, 139.1, 137.7, 133.6, 132.8, 131.8, 130.4, 128.2, 127.9, 122.6, 121.8, 120.7, 119.4, 114.5, 112.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₂BrN₂: 323.0178; found: 323.0175.

1-(4-fluorophenyl)-9*H*-pyrido[3,4-*b*]indole (**3ag**): yield 46% (24.1 mg), compound **3ag** was reported previously;^[32] yellow solid; mp = 202–205 °C; IR (KBr) v_{max} : 1625, 1606, 1511, 1497, 1469, 1453, 1404, 1233, 846, 821, 737 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 8.82 (s, 1H), 8.53 (d, *J* = 5.4 Hz, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 7.94 (d, *J* = 5.4 Hz, 1H), 7.92–7.88 (m, 2H), 7.55 (t, *J* = 7.8 Hz, 1H), 7.49 (d, *J* = 8.4 Hz, 1H), 7.31 (t, *J* = 7.2 Hz, 1H), 7.19 (t, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 161.6, 141.7, 140.3, 139.1, 134.3, 133.2, 129.8, 129.7, 128.5, 121.7, 120.3, 116.1, 115.9, 113.8, 111.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₂FN₂: 263.0979; found: 263.0979.

1-(4-chlorophenyl)-9*H*-pyrido[3,4-*b*]indole (**3ah**): yield 48% (26.7 mg), white solid; mp = 207–209 °C; IR (KBr) v_{max} : 1626, 1495, 1470, 1455, 1423, 1321, 1233, 1089, 1012, 830, 743 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 9.15 (s, 1H), 8.51 (s, 1H), 8.14 (d, *J* = 7.2 Hz, 1H), 7.93 (s, 1H), 7.79 (s, 2H), 7.52 (t, *J* = 7.2 Hz, 1H), 7.47–7.45 (m, 1H), 7.36 (s, 2H), 7.30 (t, *J* = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 141.6, 140.4, 139.5, 136.9, 134.8, 133.4, 130.1, 129.4, 129.3, 128.7, 121.8, 120.4, 114.1, 111.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₂ClN₂: 279.0684; found: 279.0688.

1-(2-(trifluoromethyl)phenyl)-9*H*-pyrido[3,4-*b*]indole (**3ai**): yield 44% (27.5 mg), yellow solid; mp = 52–55 °C; IR (KBr) v_{max} : 2361, 1627, 1561, 1502, 1455, 1316, 1170, 1114, 751 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 5.2 Hz, 1H), 8.21 (s, 1H), 8.16 (d, *J* = 7.6 Hz, 1H), 7.99 (d, *J* = 5.2 Hz, 1H), 7.86 (d, *J* = 7.6 Hz, 1H), 7.59– 7.65 (m, 2H), 7.51–7.55 (m, 2H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.30 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 141.4, 140.4, 138.6, 136.3, 134.2, 132.0, 131.4, 129.6, 129.4, 129.1, 128.6, 127.0, 126.9, 125.2, 122.5, 121.9, 121.6, 120.3, 114.4, 111.5. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₂F₃N₂: 313.0947; found: 313.0951.

1-(3-(trifluoromethyl)phenyl)-9*H*-pyrido[3,4-*b*]indole (**3aj**): yield 52% (32.4 mg), yellow solid; mp = 137–140 °C; IR (KBr) v_{max} : 2360, 1626, 1338, 1164, 1126, 745 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.28 (s, 1H), 8.51 (d, *J* = 5.2 Hz, 1H), 8.11 (d, *J* = 4.0 Hz, 2H), 7.97 (d, *J* = 7.6 Hz, 1H), 7.93 (d, *J* = 5.2 Hz, 1H), 7.56 (d, *J* = 7.6 Hz, 1H), 7.53–7.44 (m, 2H), 7.41 (d, *J* = 8.4 Hz, 1H), 7.28 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 141.1, 140.7, 139.2, 139.0, 133.5, 131.5, 131.2, 131.1, 130.4, 129.3, 128.7, 125.3, 125.2, 125.0, 124.9, 122.5, 121.7, 121.6, 120.4, 114.4, 111.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₂F₃N₂: 313.0947; found: 313.0969.

H-pyrido[3,4-*b*]indole (**3ak**): yield 20% (6.7 mg), yellow solid; mp = 171–172 °C; IR (KBr) v_{max} : 1626, 1561, 1499, 1448, 1331, 1284, 1243, 1034, 733, 600 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 9.82 (s, 1H), 8.96 (s, 1H), 8.46 (d, *J* = 4.8 Hz, 1H), 8.13 (d, *J* = 7.8 Hz, 1H), 7.97 (d, *J* = 4.8 Hz, 1H), 7.54 (s, 2H), 7.29 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 140.8, 138.2, 136.1, 133.3, 129.1, 128.6, 121.7, 121.2, 120.0, 114.9, 111.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₁H₉N₂:169.0760; found: 169.0759.

1-ethyl-9*H*-pyrido[3,4-*b*]indole (**3am**): yield 17% (6.7 mg), compound **3am** was reported previously;^[33] yellow solid; mp = 198–201 °C; IR (KBr) v_{max} : 1625, 1565,

1503, 1455, 1429, 1324, 1242, 1230, 1023, 821, 802, 742 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 9.96 (s, 1H), 8.42 (d, J = 4.2 Hz, 1H), 8.13 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 4.2 Hz, 1H), 7.50-7.48 (m, 2H), 7.27 (t, J = 6.6 Hz, 1H), 3.18 (d, J = 7.8 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 146.9, 140.5, 138.1, 134.1, 128.6, 128.1, 121.8, 121.7, 119.8, 113.0, 111.6, 27.3, 12.9. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₃N₂:197.1073; found: 197.1074.

1-isobutyl-9*H*-pyrido[3,4-*b*]indole (**3an**): yield 16% (7.2 mg), yellow solid; mp = 162–164 °C; IR (KBr) v_{max} : 1625, 1565, 1505, 1454, 1426, 1322, 1245, 746 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 8.90 (s, 1H), 8.41 (d, *J* = 4.8 Hz, 1H), 8.13 (d, *J* = 7.8 Hz, 1H), 7.84 (d, *J* = 4.8 Hz, 1H), 7.54 (s, 2H), 7.29 (s, 1H), 3.02 (d, *J* = 7.2 Hz, 2H), 2.40–2.32 (m, 1H), 0.98 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 145.1, 140.2, 134.6, 128.7, 128.3, 121.9, 121.8, 120.0, 112.8, 111.6, 43.2, 28.8, 22.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₇N₂:225.1386; found: 225.1389.

1-(furan-2-yl)-9*H*-pyrido[3,4-*b*]indole (**3ao**): yield 46% (21.5 mg), compound **3ao** was reported previously;^[34] yellow solid; mp = 79–81 °C; IR (KBr) ν_{max} : 1653, 1627, 1574, 1559, 1496, 1456, 1427, 1380, 1322, 1006, 830, 742 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 9.48 (s, 1H), 8.47–8.41 (m, 1H), 8.11 (d, *J* = 7.8 Hz, 1H), 7.85 (s, 1H), 7.67 (s, 1H), 7.56 (s, 2H), 7.35–7.27 (m, 2H), 6.63 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.3, 142.7, 140.4, 138.7, 133.3, 131.2, 130.2, 128.6, 121.6, 121.2, 120.1, 113.6, 112.3, 111.6, 108.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₁N₂O:235.0866; found: 235.0863.

1-phenyl-9*H*-pyrido[3,4-*b*]indol-6-ol (**3ba**): yield 46% (23.9 mg), yellow solid; mp = 115–116 °C; IR (KBr) v_{max} : 3445, 2361, 1650, 1559 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.22 (s, 1H), 9.23 (s, 1H), 8.39 (d, *J* = 5.2 Hz, 1H), 8.07–8.02 (m, 2H), 8.00 (d, *J* = 5.2 Hz, 1H), 7.61–7.57 (m, 3H), 7.51–7.46 (m, 2H), 7.13–7.10 (m, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 151.1, 142.1, 138.6, 137.6, 135.3, 133.7, 128.9,

128.7, 128.4, 128.3, 121.5, 118.4, 113.9, 113.1, 105.5. HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{17}H_{13}N_2O$:261.1022; found: 261.1022.

6-chloro-1-phenyl-9*H*-pyrido[3,4-*b*]indole (**3ca**): yield 39% (21.7 mg), yellow solid; mp = 121–123 °C; IR (KBr) ν_{max}: 2928, 2857, 2360, 1624, 1561, 1448, 1272, 1264, 1066, 761, 696, 611 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 9.29 (s, 1H), 8.47 (d, *J* = 4.8 Hz, 1H), 8.05 (s, 1H), 7.84–7.80 (m, 3H), 7.41 (d, *J* = 6.0 Hz, 3H), 7.36 (d, *J* = 7.2 Hz, 1H), 7.29 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 143.3, 139.3, 138.7, 138.0, 134.0, 129.0, 128.8, 128.6, 128.0, 125.5, 122.8, 121.2, 113.7, 112.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₂ClN₂:279.0684; found: 279.0687.

6-methoxy-1-phenyl-9*H*-pyrido[3,4-*b*]indole (**3da**): yield 43% (23.6 mg), compound **3da** was reported previously;^[32] yellow solid; mp = 193–196 °C; IR (KBr) ν_{max}: 1631, 1561, 1495, 1470, 1435, 1285, 1214, 1036, 816, 758, 693 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 4.8 Hz, 1H), 8.45 (s, 1H), 7.92 (d, *J* = 7.2 Hz, 2H), 7.85 (d, *J* = 4.8 Hz, 1H), 7.58–7.49 (m, 3H), 7.43–7.45 (m, 1H), 7.36 (d, *J* = 8.8 Hz, 1H), 7.17 (d, *J* = 8.8 Hz, 1H), 3.93 (s, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 153.8, 141.2, 136.7, 136.0, 133.3, 129.9, 129.1, 128.9, 128.6, 120.9, 119.2, 114.4, 113.5, 103.4, 55.6. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₅N₂O:275.1179; found: 275.1198.

9-methyl-1-phenyl-9*H*-pyrido[3,4-*b*]indole (**3ea**): yield 51% (26.3 mg), black solid; mp = 95–97 °C; IR (KBr) v_{max} : 1619, 1446, 1401, 1228, 1049, 1033, 1018, 787, 701, 617 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 8.52 (d, *J* = 5.4 Hz, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 7.95 (d, *J* = 5.4 Hz, 1H), 7.63 (d, *J* = 7.8 Hz, 2H), 7.59 (t, *J* = 7.8 Hz, 1H), 7.52– 7.46 (m, 3H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.30 (t, *J* = 7.2 Hz, 1H), 3.44 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 144.1, 142.8, 139.8, 138.3, 134.9, 130.0, 129.5, 128.4, 128.3, 128.1, 121.4, 121.1, 119.8, 113.5, 109.7, 32.9. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₅N₂:259.1230; found: 259.1237.

9-benzyl-1-phenyl-9*H*-pyrido[3,4-*b*]indole (**3fa**): yield 12% (8.0 mg), white solid; mp = 145–147 °C; IR (KBr) v_{max} : 1618, 1555, 1491, 1443, 1406, 1345, 1312, 1283, 1199, 997, 785, 743, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, *J* = 5.2 Hz, 1H), 8.20 (d, *J* = 8.0 Hz, 1H), 8.01 (d, *J* = 5.2 Hz, 1H), 7.54–7.47 (m, 1H), 7.40–7.33 (m, 3H), 7.32–7.24 (m, 4H), 7.13–7.03 (m, 3H), 6.55 (d, *J* = 7.2 Hz, 2H), 5.19 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 142.6, 139.2, 138.4, 136.8, 134.3, 130.6, 129.2, 128.6, 128.3, 127.9, 127.0, 125.6, 121.5, 121.3, 120.2, 113.6, 110.5, 48.0. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₉N₂:335.15428; found: 335.15448.

methyl 1-phenyl-9*H*-pyrido[3,4-*b*]indole-3-carboxylate (**3ga**): yield 50% (30.2 mg), compound **3ga** was reported previously;^[35] yellow solid; mp = 255–258 °C; IR (KBr) v_{max} : 1720, 1638, 1627, 1561, 1498, 1458, 1437, 1252, 1100, 1046, 1025 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.89 (s, 1H), 8.90 (s, 1H), 8.40 (d, *J* = 7.2 Hz, 1H), 8.00 (d, *J* = 6.6 Hz, 2H), 7.73–7.49 (m, 5H), 7.31 (s, 1H), 3.93 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.1, 142.1, 141.5, 137.5, 136.7, 134.6, 129.2, 129.0, 128.8, 128.7, 128.6, 122.0, 121.1, 120.4, 116.7, 112.8, 52.1. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₅N₂O₂:303.1128; found: 303.1138.

ASSOCIATED CONTENT

Supporting Information

Crystallographic data and copies of the ¹H and ¹³C NMR spectra are involved. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: chwuax@mail.ccnu.edu.cn.

Author Contributions

† Zi-Xuan Wang and Jia-Chen Xiang contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the National Natural Science Foundation of China (Grant 21472056, 21602070 and 21772051) and the Fundamental Research Funds for the Central Universities (CCNU15ZX002 and CCNU16A05002) for financial support. It was also supported by the 111 Project B17019. We acknowledge an Excellent Doctoral Dissertation Cultivation Grant from Central China Normal University (2017YBZZ022).

REFERENCES

1 (a) Cabrera, G. M. and Seldes, A. M. A β -Carboline Alkaloid from the Soft Coral Lignopsis spongiosum. J. Nat. Prod. **1999**, 62, 759–760. (b) Wang, W. H.; Nam, S. J.; Lee, B. C. and Kang H. β -Carboline Alkaloids from a Korean Tunicate *Eudistoma* sp. J. Nat. Prod. **2008**, 71, 163–166. (c) Teichert, A.; Schmidt, J.; Porzel, A. Arnold, N. and Wessjohann. L. Brunneins A–C, β -Carboline Alkaloids from Cortinarius brunneus. J. Nat. Prod. **2007**, 70, 1529–1531.

2 Chen, Q.; Ji, C. T.; Song, Y. X.; Huang, H. B.; Ma, J. Y.; Tian, X. P.; Ju, J. H. Discovery of McbB, an Enzyme Catalyzing the β -Carboline Skeleton Construction in the Marinacarboline Biosynthetic Pathway. *Angew. Chem. Int. Ed.* **2013**, *52*, 9980–9984.

3 (a) Segraves, N.; Robinson, L. S. J.; Garcia, D.; Said, S. A.; Fu, X.; Schmitz, F. J.; Pietraszkiewicz, H.; Valeriote, F. A.; and Crews, P. Comparison of Fascaplysin and Related Alkaloids: A Study of Structures, Cytotoxicities, and Sources. *J. Nat. Prod.* **2004**, 67, 783–792. (b) Wang, W. H.; Nam, S. J.; Lee, B. C. and Kang, H. β -Carboline Alkaloids from a Korean Tunicate Eudistoma sp. *J. Nat. Prod.* **2008**, *71*, 163–166. (c) Won, T. H.; Jeon, J. E.; Lee, S. H.; Rho, B. J.; Oh, K. B.; Shin, J. H. Beta-carboline alkaloids derived from the ascidian Synoicumsp. *Bioorg. Med. Chem.* **2012**, *20*, 4082–4087.

4 Cao, R. H.; Peng, W. L.; Wang, Z. H.; Xu, A. β -Carboline Alkaloids: Biochemical and Pharmacological Functions. *Curr. Med. Chem.* **2007**, *14*, 479–500.

5 Adesanya, S. A.; Chbani, M.; Pais, M.; Debitus, C. Brominated β -Carbolines from the Marine Tunicate Eudistoma album. Brominated β -Carbolines from the Marine Tunicate Eudistoma album. *J. Nat. Prod.* **1992**, *55*, 525–527.

6 Herraiz, T. Identification and Occurrence of β -Carboline Alkaloids in Raisins and Inhibition of Monoamine Oxidase (MAO). J. Agric. Food Chem. **2007**, 55, 8534–8540.

7 (a) Hadjaz, F.; Yous, S.; Lebegue, N.; Berthelot, P.; Carato, P. A Mild and Efficient Route to 2-benzyl Tryptamine Derivatives via Ring-opening of β -Carbolines. *Tetrahedron*, **2008**, *64*, 10004–10008. (b) Savariz, F. C.; Foglio, M. A.; Carvalho, J. E.; Ruiz, A. L. T. G.; Duarte, M. C. T.; Rosa, M. F. d.; Meyer, E.

1 2	
3	
4 5	
6 7	
8	
9 10	
11	
12	
14 15	
16	
17	
19 20	
21	
22 23	
24 25	
26	
27 28	
29 30	
31	
32 33	
34 35	
36	
37 38	
39 40	
41	
42 43	
44 45	
46	
47	
49 50	
51 52	
53	
54 55	
56 57	
58	
59 60	

M. H. and of and Sarragiotto, **Synthesis** Evaluation New β -Carboline-3-(4-benzylidene)-4H-oxazol-5-one Derivatives as Antitumor Agents. Molecules 2012, 17, 6100–6113. (c) Devi, N.; Singh, D.; Kaur, G.; Mor, S.; Putta, V. P. R. K.; Polina, S.; Malakard, C. C.; and Singh, V. In(OTf)₃ Assisted Synthesis of β -Carboline C-3 Tethered Imidazo[1,2-a]azine Deriva. New J. Chem., 2017, 41, 1082–1093. (d) Liu; L.; Yang, Q.; Yu, H.; Li, J. L.; Pei, Y. N.; Zhu, H. J.; Li, Z. Q.; Wang, X. K. Fitness of Driving Force and Catalytic Space in Chiral Catalyst Design. Application of Axial Biscarboline N–O Chiral Catalyst for Enantioselective Allylation of Allyltrichlorosilane to Bulky Substituted Aldehydes. Tetrahedron, 2015, 71, 3296–3302.

8 Liew, L. P. P.; Fleming, J. M.; Longeon, A.; Mouray, E.; Florent, I.; Kondracki, M. L. B.; Copp, B. R. Synthesis of 1-indolyl Substituted β -Carboline Natural Products and Discovery of Antimalarial and Cytotoxic Activitie. *Tetrahedron*, **2014**, *70*, 4910–4920.

9 Humphrey, J. M.; Liao, Y.; Ali, A.; Rein, T.; Wong, Y. L.; Chen, H. J.; Courtney, A. K. and Martin, S. F. Enantioselective Total Syntheses of Manzamine A and Related Alkaloids. *J. Am. Chem. Soc.* **2002**, *124*, 8584–8592.

10 Nicolaou, K. C.; Mathison, C. J. N.; and Montagnon, T. *o*-Iodoxybenzoic Acid (IBX) as a Viable Reagent in the Manipulation of Nitrogen- and Sulfur-Containing Substrates: Scope, Generality, and Mechanism of IBX-Mediated Amine Oxidations and Dithiane Deprotections. *J. Am. Chem. Soc.* **2004**, *126*, 5192–5201.

11 Kamal, A.; Tangella, Y.; Manasa, K. L.; Sathish, M.; Srinivasulu, V.; Chetnac, J. and Alarifi, A. PhI(OAc)₂-mediated One-pot Oxidative Decarboxylation and Aromatization of Tetrahydro- β -carbolines: Synthesis of Norharmane, Harmane, Eudistomin U and Eudistomin I. *Org. Biomol. Chem.*, **2015**, *13*, 8652–8662.

12 (a) Huang, Y. Q.; Song, H. J.; Liu, Y. X.; Wang, Q. M. Dehydrogenation of N - Heterocycles by Superoxide Ion Generated through Single - Electron Transfer. *Chem. Eur. J.* **2018**, *24*, 2065–2069. (b) Zhang, G. X.; Cao, R. H.; Guo, L.; Ma, Q.; Fan, W. X.; Chen, X. M.; Li, J. R.; Shao, G.; Qiu, L. Q.; Ren Z. H. Synthesis and Structure–activity Relationships of N^2 -alkylated Quaternary β -carbolines as Novel Antitumor Agents. *Eur. J. Med. Chem.*, **2013**, *65*, 21–31. (c) Huang, W.; Li, J.; Ou, L. Facile Synthesis of Isoquinolines, β - Carbolines, and 3 - Deazapurines. *Synthetic Commun.*, **2007**, *37*, 2137–2143; (d) Anderson. S. E. M. O. Microwave - Assisted Synthesis of Tetrahydro - β - carbolines and β - Carbolines. *Eur. J. Org. Chem.* **2014**, 1653–1665. (e) Yan, Q.; Gin, E.; Banwell, M. G.; Willis, A. C., and Carr. P. D. A Unified Approach to the Isomeric α -, β -, γ -, and δ -Carbolines via their 6,7,8,9-Tetrahydro Counterparts. *J. Org. Chem.* **2017**, *82*, 4328–4335.

13 Yan, Q.; Gin, E.; Banwell, M. G.; Willis, A. C.; and Carr. P. D. A Unified Approach to the Isomeric α -, β -, γ -, and δ -Carbolines via their 6,7,8,9-Tetrahydro Counterparts. *J. Org. Chem.* **2017**, *82*, 4328–4335.

14 (a) Tagawa, S.; Choshi, T.; Okamoto, A.; Nishiyama, T.; Watanabe, S.; Hatae, N.; Ishikura, M.; Hibino, S. Enantioselective Total Synthesis of 1,3 -

Disubstituted β - Carboline Alkaloids, (-) - Dichotomine A and (+) -Dichotomide II. *Eur. J. Org. Chem.* 2013, 1805–1810. (b) Kusurkar, R. S.; Goswami, S. K. Efficient One-pot Synthesis of Anti-HIV and Anti-tumour β -carbolines. *Tetrahedron*, 2004, 60, 5315–5318.

15 Gaich, T. and Baran, P. S. Aiming for the Ideal Synthesis. J. Org. Chem., 2010, 75, 4657–4673.

16 (a) Chen, Q.; Ji, C. T.; Song, Y. X.; Huang, H. B.; Ma, J. Y.; Tian, X. P.; Ju, J. H. Discovery of McbB, an Enzyme Catalyzing the β - Carboline Skeleton Construction in the Marinacarboline Biosynthetic Pathway. *Angew. Chem. Int. Ed.* **2013**, *52*, 9980–9984. (b) Wang, W. H.; Nam, S. J.; Lee, B. C.; Kang, H. β -Carboline Alkaloids from a Korean Tunicate *Eudistoma* sp. *J. Nat. Prod.*, **2008**, *71*, 163–166. (c) Rinehart, K. L.; Kobayashi, J.; Harbour, G. C.; Hughes, R. G. Jr.; Mizsak, S. A.; Scahill, T. A. Eudistomins C, E, K, and L, Potent Antiviral Compounds Containing a Novel Oxathiazepine Ring from the Caribbean Tunicate Eudistoma Olivaceum. *J. Am. Chem. Soc.* **1984**, *106*, 1524–1526. (d) Shen, G. Q.; Baker, B. J. Biosynthetic Studies of the Eudistomins in the Tunicate Eudistoma Olivaceum. *Tetrahedron Lett.* **1994**, *35*, 1141–1144.

17 Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. Collective Synthesis of Natural Products by Means of Organocascade Catalysis. *Nature* **2011**, *475*, 183–188.

18 (a) Wiester, M. J.; Ulmann, P. A.; Mirkin, C. A. Enzyme Mimics Based Upon Supramolecular Coordination Chemistry. *Angew. Chem. Int. Ed.* **2011**, *50*, 114–137. (b) Nestl, B. M.; Hammer, S. C.; Nebel, B. A.; Hauer, B. New Generation of Biocatalysts for Organic Synthesis. *Angew. Chem. Int. Ed.* **2014**, *53*, 3070–3095. (c) Liu, L.; Breslow, R. A Potent Polymer/Pyridoxamine Enzyme Mimic. J. Am. Chem. Soc. **2002**, *124*, 4978–4979. (d) Hedin-Dahlström, J.; Rosengren-Holmberg, J. P.; Legrand, S.; Wikman, S.; Nicholls, I. A. A Class II Aldolase Mimic. J. Org. Chem. **2006**, *71*, 4845–4853.

19(a) List, B.; Lerner, R. A.; Barbas III, C. F. Proline-Catalyzed Direct Asymmetric Aldol Reactions. *J. Am. Chem. Soc.* **2000**, *122*, 2395-2396. (b) Gröger, H.; Wilken, J. The Application of L - Proline as an Enzyme Mimic and Further New Asymmetric Syntheses Using Small Organic Molecules as Chiral Catalysts. *Angew. Chem. Int. Ed.* **2001**, *40*, 529–532.

20(a) Becker, R.; Amirjalayer, S.; Woutersen, P. Li, S.; Reek, J. N. H. An iron-iron Hydrogenase Mimic with Appended Electron Reservoir for Efficient Proton Reduction in Aqueous Media. *Sci. Adv.*, **2016**, *2*, e1501014. (b) Arashiba, K.; Kinoshita, E.; Kuriyama, S.; Eizawa, A.; Nakajima, K.; Tanaka, H.; Yoshizawa, K.; Nishibayashi, Y. Catalytic Reduction of Dinitrogen to Ammonia by Use of Molybdenum–Nitride Complexes Bearing a Tridentate Triphosphine as Catalysts. *J. Am. Chem. Soc.* **2015**, *137*, 5666–5669. (c) Anderson, J. S.; Rittle. J.; Peters, J. C. Catalytic Conversion of Nitrogen to Ammonia by an Iron Model Complex. *Nature* **2013**, *501*, 84–87.

21 Chen, J. F.; Gong, X.; Li, J. Y.; Li, Y. K.; Ma, J. G.; Hou, C. K.; Zhao, G. Q. W.; Yuan, C.; Zhao, B. G. Carbonyl Catalysis Enables a Biomimetic Asymmetric Mannich Reaction. *Science* **2018**, *360*, 1438–1442.

22 (a) Cao, L. H.; Zhang, W.; Luo, J. G.; Kong, L. Y. Five New β - Carboline -Type Alkaloids from Stellaria dichotomavar. Lanceolata. *Helv. Chim. Acta.* 2012, 95, 1018–1025. (b) Go, M.; Zhang, W. C.; Lim, B.; Yew, W. S. Glycine Decarboxylase Is an Unusual Amino Acid Decarboxylase Involved in Tumorigenesis. *Biochemistry*, 2014, 53, 947–956. (c) Meyer, D.; Walter, L.; Kolter, G.; Pohl, M.; Müller, M.; Tittmann, K. Conversion of Pyruvate Decarboxylase into an Enantioselective Carboligase with Biosynthetic Potential. *J. Am. Chem. Soc.*, 2011, 133, 3609–3616.

23 (a) Svenson, J.; Zheng, N.; Nicholls, I. A. A Molecularly Imprinted Polymer-Based Synthetic Transaminase. J. Am. Chem. Soc., **2004**, 126, 8554– 8560. (b) R. Breslow, A. W. Czarnik, M. Lauer, R. Leppkes, J. Winkler, S. Zimmerman, Mimics of Transaminase Enzymes. J. Am. Chem. Soc., **1986**, 108, 1969–1979. (c) Sklenak, S.; Yao, L. S.; Cukier, R. I.; Yan, H. G. Catalytic Mechanism of Yeast Cytosine Deaminase: An ONIOM Computational Study. J. Am. Chem. Soc., **2004**, 126, 14879–14889. (d) Maydanovych, O.; Beal, P. A. Breaking the Central Dogma by RNA Editing. Chem. Rev. **2006**, 106, 3397– -3411 and reference cited there in.

24 (a) Stöckigt, J.; Antonchick, A. P.; Wu, F. R.; Waldmann, H. The Pictet– Spengler Reaction in Nature and in Organic Chemistry. *Angew. Chem. Int. Ed.* **2011**, *50*, 8538–8564 and references cited therein. (b) Lin, C. I.; McCarty, R. M.; Liu, H. W. The Enzymology of Organic Transformations: A Survey of Name Reactions in Biological Systems. *Angew. Chem. Int. Ed.* **2017**, *56*, 3446–3489. (c) Hoshino, T. Mori; Sahashi, S. S.; Wakimoto, T.; Matsui, T.; Morita, H.; Abe, I. Structural Basis for β -Carboline Alkaloid Production by the Microbial Homodimeric Enzyme McbB. *Chem. Biol.*, **2015**, *22*, 898–906.

25 Lan, J. S.; Xie, S. S.; Li, S. Y.; Pan, L. F.; Wang, X. B.; Kong, L. Y. Design, Synthesis and Evaluation of Novel Tacrine-(β -carboline) Hybrids As Multifunctional Agents for the Treatment of Alzheimer's Disease. *Bioorg. Med. Chem.* **2014**, *22*, 6089–6104.

26 (a) Murahashi, S. I.; Imada, Y.; Ohtake, H. Tungstate-Catalyzed Decarboxylative Oxidation of N-Alkyl-.alpha.-amino Acids: An Efficient Method for Regioselective Synthesis of Nitrones. *J. Org. Chem.* **1994**, *59*, 6170–6172. (b) Cheng, Y.; Xiang, J. C.; Wang, Z. X.; Ma, J. T.; Wang, M.; Tang, B. C. ;Wu, Y. D.; Zhu, Y. P.; Wu, A. X. Dimerization of Phenylalanine: An Approach to Thiazoles And Oxazoles Involved S/O - Insertion. *Adv. Synth. Catal.* **2018**, *360*, 550–555.

27 (a)Xiang, J. C.; Cheng, Y.; Wang, M.; Wu, Y. D. and Wu, A. X. Direct Construction of 4-Hydroxybenzils *via* Para -Selective C–C Bond Coupling of Phenols and Aryl Methyl Ketones. *Org. Lett.* **2016**, *18*, 4360–4363. (b) Wu, X.; Gao, Q.; Liu, S. and Wu, A. X. I₂-Catalyzed Oxidative Cross-Coupling of Methyl Ketones and Benzamidines Hydrochloride: A Facile Access to α -Ketoimides.

Org. Lett. **2014**, *16*, 2888–2891. (c) Wu, X. F.; Natte, K. The Applications of Dimethyl Sulfoxide as Reagent in Organic Synthesis. *Adv. Synth. Catal.* **2016**, *358*, 336–352.

28 Selective heterocycles synthesis from sustainable green resources, see: (a) Michlik, S.; Kempe, R. A Sustainable Catalytic Pyrrole Synthesis. *Nat. Chem.* **2013**, *5*, 140–144. (b) Michlik, S.; Kempe, R. Regioselectively Functionalized Pyridines from Sustainable Resources. *Angew. Chem., Int. Ed.* **2013**, *52*, 6326–6329. (c) Zhang, M.; Neumann, H.; Beller, M. Selective Ruthenium–Catalyzed Three–Component Synthesis of Pyrroles. *Angew. Chem., Int. Ed.* **2013**, *52*, 597–601.

29 Liv Tone, E. Peptides for the inhibition of tumor growth U.S. Pat. Appl. Publ., 20080019993, 24 Jan **2008**.

30 Ivanov, I.; Nikolova, S. and Statkova-Abeghe, S. A Simple Method for the Synthesis of 1-Substituted β -Carboline Derivatives from Tryptamine and Carboxylic Acids in Polyphosphoric Acid. *Heterocycles* **2005**, *65*, 2483–2492.

31 Hadjaz, F.; Yous, S.; Lebegue, N.; Berthelot, P.; Carato, P. A Mild And Efficient Route to 2-benzyl Tryptamine Derivatives via Ring-opening of β -carbolines. *Tetrahedron* **2008**, *64*, 10004–10008.

32 Kulkarni, A.; Abid, M.; Török, B.; Huang, X. D. A Direct synthesis of β -carbolines via a Three-step One-pot Domino Approach with a Bifunctional Pd/C/K-10 Catalyst. *Tetrahedron Letters*, **2009**, *50*, 1791–1794.

33 Wu, M.; Wang, S. An Alternative to Pictet–Gams Reaction Triggered by Hendrickson Reagent: Isoquinolines and β -Carbolines from Amides. *Synthesis* **2010**, *4*, 587–592.

34 Kusurkar, R. S.; Goswami, S. K. Efficient One-pot Synthesis of Anti-HIV and Anti-tumour β -carbolines. *Tetrahedron*, **2004**, *60*, 5315–5318.

35 Tang, J. G.; Wang, Y. H.; Wang, R. R.; Dong, Z. J.; Yang, L. M.; Zheng, Y. T.; and Liu, J. K. Synthesis of Analogues of Flazin, in Particular, Flazinamide, as Promising Anti-HIV Agents. *Chemistry & Biodiversity* **2008**, *5*, 447–460.