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ular radical cyclization.
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The natural alkaloid (–)-morphine is an important narcotic
analgesic but it exhibits undesired addictive side effects.1

Structural modification can reduce this problem to a con-
siderable extent, such as the clinically used (–)-pentazo-
cine (1) and (–)-9-epi-metazocine (2b) (Figure 1).2 Most
analogues of (–)-morphine feature a benzylic quaternary
carbon center, and the construction of such a center in an
enantioselective manner is an ongoing challenge for or-
ganic chemists. Methods for the enantioselective con-
struction of this center include Grewe-type cyclization,3

radical reaction,4 palladium-catalyzed asymmetric allylic
alkylation (AAA),5 Heck reaction,6 and Claisen rear-
rangement.7 Recently, our group reported that the synthe-
sis of a rigid benzobicyclo[3.3.1] lactone proceeds
through an intramolecular Friedel–Crafts type Michael
addition of the corresponding α,β-unsaturated lactone.8

However, application of the strategy to the synthesis of
(–)-9-epi-metazocine was not efficient. Herein, we report
an asymmetric synthesis of (–)-9-epi-metazocine through
the application of intramolecular radical cyclization.

Figure 1

Our retrosynthetic analysis is outlined in Scheme 1. The
framework of 2b may be accessed stereoselectively
through intramolecular radical cyclization of the α,β-un-
saturated lactam 3. The formation of 3 could be accom-
plished by using ring-closing metathesis (RCM) from
amide 4, which, in turn, was derived from 5. The prepara-

tion of 5 could be achieved from aldehyde 6 and N-propi-
onylthiazolidinethione (7) by an Evans aldol reaction.

Scheme 1  Retrosynthetic analysis

The synthesis of intermediate 5 is shown in Scheme 2.
Starting from the commercially available 3-bromoanisole
(8), 2-bromo-4-methoxyacetophenone (9) was obtained in
70% yield through a Friedel–Crafts reaction.9 Upon treat-
ment of 9 with bromine, the substituted phenacyl bromide
10 was obtained in nearly quantitative yield. Reduction of
10 with NaBH4 followed by intramolecular SN2 reaction
generated the epoxy compound, which was transformed
into aldehyde 6 upon treatment with a catalytic amount of
BF3·OEt2

10 in 81% overall yield for the three steps. Gen-
eration of 5 through an Evans syn aldol reaction11 between
aldehyde 6 and N-propionylthiazolidinethione (7) in 76%
yield with excellent diastereoselectivity (>20:1 dr) com-
pleted the synthesis.12
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Scheme 2 Reagents and conditions: (a) AlCl3·AcCl, CH2Cl2, 0 °C,
70%; (b) Br2, Et2O, r.t., 96%; (c) NaBH4, MeOH, then K2CO3, r.t.,
93%; (d) BF3·Et2O, THF, r.t., 91%; (e) TiCl4, (–)-sparteine, 0 °C,
NMP, 7, CH2Cl2, –78 °C, 76%.

With the key intermediate 5 in hand, it was smoothly con-
verted into the corresponding Weinreb amide 11,13 and its
free hydroxy group was protected as the TBS ether to af-
ford 12 (Scheme 3). Treatment of 12 with excess methyl
magnesium iodide gave the corresponding ketone 13 in
92% yield. Subsequent Wittig reaction led to olefin 14 in
85% yield. Deprotection of 14 afforded 15, which was
converted into the corresponding azide 16 by the use of
(PhO)2P(O)N3.

14,15 Under Staudinger reaction
conditions16 (PPh3, THF–H2O), azide 16 was reduced to
the primary amine, which was directly acylated with acry-
loyl chloride in the present of Et3N to give 4 in 50% yield
over two steps. The substituted α,β-unsaturated lactam 17

was generated by ring-closing metathesis (RCM)17 utiliz-
ing Hoveyda second-generation Grubbs catalyst, in 25%
yield (60% recovery of material, 40% brsm).18 In this pro-
cess, other Grubbs catalysts were also examined, but the
yields were low. Methylation (NaH, MeI) of 17, followed
by radical cyclization with Bu3SnH in the presence of
AIBN in benzene at reflux, led to aryl radical cyclization19

and the exclusive formation of 6-exo cyclization product
18 in 87% yield.20 Upon reduction and subsequent de-
methylation, (–)-9-epi-metazocine (2b)21 was obtained in
90% yield over two steps.

In conclusion, we have finished the total synthesis of (–)-
9-epi-metazocine (2b) using an Evans syn aldol reaction,
ring-closing metathesis, and radical cyclization as key
steps. The benzylic quaternary carbon center was estab-
lished through intramolecular radical cyclization with
high stereoselectivity.
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33.8, 24.1, 14.4; HRMS (ESI): m/z [M + H]+ calcd for 
C16H22NO2: 260.1645; found: 260.1657.

Scheme 4

(22) (–)-9-epi-metazocine (2b): [α]D
17 +22.0 (c 0.5, CHCl3); 

1H 
NMR (CDCl3, 400 MHz): δ = 6.95 (d, J = 8.0 Hz, 1 H), 6.80 
(d, J = 2.4 Hz, 1 H), 6.61 (dd, J = 2.4, 8.0 Hz, 1 H), 3.13 (d, 
J = 17.6 Hz, 1 H), 2.92 (d, J = 5.6 Hz, 1 H), 2.67 (dd, J = 5.6, 
17.6 Hz, 1 H), 2.44 (d, J = 6.8 Hz, 1 H), 2.36 (s, 3 H), 2.03 
(d, J = 8.4 Hz, 2 H), 1.88 (q, J = 6.8 Hz, 1 H), 1.29 (s, 3 H), 
1.26 (d, J = 7.2 Hz, 3 H), 1.10 (d, J = 9.6 Hz, 1 H); 13C NMR 
(CDCl3, 100 MHz): δ = 154.1, 146.4, 129.1, 128.6, 113.0, 
111.5, 60.1, 47.6, 43.0, 38.2, 34.9, 34.8, 27.3, 24.0, 15.0; IR: 
3254, 2932, 2865, 1610, 1496, 1485, 1360, 769 cm–1; 
HRMS (ESI): m/z [M + H]+ calcd for C15H22NO: 232.1696; 
found: 232.1692.
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