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chemistry: stereoselective synthesis of functionalized
3-amino-3,6-dihydro-2H-pyrans and incorporation

in peptide derivativesq
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Abstract—A stereocontrolled synthesis of an unsaturated sugar bearing two amino groups (one of them masked as an azide), using
an Overman rearrangement as key step, is described. This scaffold is used to prepare two peptides having aromatic fragments, which
have shown activity as calpain inhibitors.
� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Although many peptides are biologically active, they fre-
quently suffer from inadequate in vivo efficacy as a result
of poor absorption, lack of transportation, rapid
metabolic degradation, and inability to achieve the
biologically active conformation. To overcome these
inconveniences, many peptide analogues have been pre-
pared.1 An important step in the development of drug
candidates is the use of molecular scaffolds that are de-
signed to induce conformational restraints as well as to
improve the pharmacological profile.2,3 In connection
with ongoing projects on the synthesis, structure, and
biological activity of peptidic compounds,4 we have
been interested in the preparation of new peptide deriv-
atives employing unsaturated carbohydrate as scaffolds
(peptide–carbohydrate hybrids). The generic target com-
pound A (Fig. 1) has peptide or amino acid residues
tethered to the positions 3 and 6 of an unsaturated pyra-
nose. Since the relative stereochemistry and the distance
(by changes in the nature of the groups X and Y) of the
two peptide chains can be readily controlled, the poten-
tial structural variety of compounds of type A is high.
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Additionally, the substituent on the anomeric position
offers a site for further molecular diversity and the endo-
cyclic olefinic bond provides a conformational bias to
the molecule. The target molecule A can be synthesized
from hexenopyranosides of type B, which in turn can be
prepared from readily available glycals using standard
transformations in carbohydrate chemistry. Recently,
we have reported the synthesis of compounds of type
C, using a Claisen rearrangement as key step, where
the two peptide chains have the same orientation.5 The
synthetic utility of the scaffold B may be expanded by
reversing the sense of the peptide chains (retro-pep-
tides),6 provided that a 3,6-diamino-substituted-3,6-
dihydro-2H-pyran (D) is available. In this letter, we
report the synthesis of the 3,6-dihydro-2H-pyran 1 as well
as its application to peptide derivatives of type E as
well as their activity as inhibitor of the protease calpain.
2. Results and discussion

The synthesis of the target amine 1 is indicated in
Scheme 1. The allylic alcohol 3 was prepared in five
steps (66% overall yield) from commercial available
3,4,6-tri-O-triacetyl-DD-glucal (2) as previously reported.5

Treatment of 3 with trichloroacetonitrile in presence of
DBU furnished the trichloroacetimidate 4 (95% yield),7

which, after purification, was submitted to the Overman
rearrangement8 by refluxing in xylene in the presence of
potassium carbonate,9,10 giving the corresponding
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Figure 1. Structures of peptide–carbohydrate hybrids (A, C, E) and 3,6-dihydro-2H-pyran derivatives (B, D, 1).
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Scheme 1. Reagents and conditions: (a) five steps (66% yield), Ref. 5; (b) Cl3CCN, DBU, CH2Cl2, 0 �C to rt, 95%; (c) K2CO3, xylene, reflux, 77%, (d)

TBAFÆ3H2O, THF, 80%; (e) MsCl, Et3N, CH2Cl2, 0 �C; (f) NaN3, Et3N, DMF, 60 �C, 56% (two steps); (g) NaOH, EtOH, H2O, reflux, 64%.
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trichloroacetamide 5 in good yield (77%) and with total
stereoselectivity.11 Compound 5 was desylilated (TBAF,
80% yield) to the alcohol 6, which, in turn, was sequen-
tially transformed to the sulfonate 7 and the azide 8
(56% yield for the combined two steps). Finally, hydro-
lysis of the trichloroacetamide 8 under basic conditions
afforded the unsaturated amino azide 1 (64% yield), that
has been used for the synthesis of peptide–carbohydrate
hybrids.

Our recent research on calpain,4a,12 a cysteine protease
involved in a variety of degenerative diseases,13 has
shown that peptide derivatives having hydrophobic
and aromatic amino acids are inhibitors of this enzyme.
Therefore, we chose as target the peptides 11 and 12,
which, in turn, can be considered as analogues of the
natural penta-peptides Leu-enkephalin (Leu-Phe-Gly-
Gly-Tyr) and Met-enkephalin (Leu-Phe-Gly-Gly-Tyr),
respectively, where the dihydro-2H-pyran scaffold re-
places the Gly-Gly fragment of the natural peptides.14

Although the enkephalins are potent analgesic natural
peptides acting on the opioid receptor, their pharmaco-
logical utility is limited, what makes the search for
enkephalin analogues an active research field.15
The synthesis of 11 and 12 is indicated in Scheme 2. All
the peptide bonds were formed by standard solution
methods using 1-ethyl-3-(3-(dimethylamino)propyl)-carbo-
diimide hydrochloride (EDC) and 1-hydroxybenzo-
triazole (HOBt) as coupling reagents, triethyl amine as
base, 4-(dimethylamino)pyridine (DMAP) as catalysts,
and dimethylformamide as solvent.16 Reaction of amino
azide 1 with dipeptides Ac-Leu-Phe-OH and C6F5SO2-
Met-Phe-OH gave intermediates 9 (50%) and 10 (52%),
respectively. Reduction of the azido group was achieved
by reaction with triphenylphosphine and water in reflux-
ing benzene. The resulting amines, which were used
without any purification, were coupled to 4-Biph-Tyr-
OH and Ts-Tyr(Ts)-OH employing the peptide coupling
procedure described above to furnish compounds 11
(74%) and 12 (76%), respectively.17

Although a detailed conformational analysis on peptides
11, 12, and related compounds is underway, we have ob-
served concentration-independent strong m (N–H) bands
at 3287 cm�1 in the IR spectra (CH2Cl2) of 11 and 12,
which are indicative of the presence of intramolecular
H-bond. On the other hand, although the biological
activity of 11 and 12 as enkephalin analogues has not
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been determined yet, we have determined their activities
as calpain inhibitors, finding that compounds 11 and 12
are moderate calpain inhibitors, with IC50 values of 17
and 78 lM, respectively.18
3. Conclusion

We have developed a totally stereoselective route for the
synthesis of the densely functionalized 3,6-dihydro-2H-
pyran 1, which presents a cis stereochemistry between
the side chains containing the nitrogenated functional-
ities. This scaffold was incorporated in peptidomimetics
that can be considered modified retro-analogues of
enkephalins, and that have shown activity as calpain
inhibitors. Work is in progress in order to determine,
by solution and computational techniques, the conform-
ational preferences induced by template 1 when intro-
duced into a peptidic chain as well as the biological
activity of the resulting enkephalin analogues.
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Carom), 127.9 (d, 2C, Carom), 126.8 (d, 2C, Carom), 123.2 (d,
2C, Carom), 122.6 (d, Carom), 122.5 (d, C-4), 116.8 (t,
CH@CH2), 114.8 (d, 2C, Carom), 97.5 (d, C-2), 67.5 (t,
C-1 0), 66.2 (d, C-6), 55.4 (d, C-9), 53.4 (d, C-200), 51.1 (d,
C-12), 45.1 (d, C-3), 42.1 (t, C-13), 37.5 (t, C-7), 36.5 (t,
C-10 or C-300), 36.4 (t, C-300 or C-10), 24.1 (d, C-14), 22.8
(q, C-15), 23.4 (q, C-15), 21.6 (q, COCH3); IR (KBr) m
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(t, 1H, J100,7 = 5.5, NH-100), 7.96 (d, 1H, J400,200 = 9.1,
NH-400), 7.69 (d, 2H, Jortho = 8.4, Harom-tolyl), 7.63 (d,
2H, Jortho = 8.6, Harom-tolyl), 7.45 (d, 2H, Jortho = 8.6,
Harom-tolyl), 7.42 (d, 2H, Jortho = 8.4, Harom-tolyl), 7.20
(m, 5H, Harom-Phe), 7.08 (d, 2H, Jortho = 8.6, Harom-Tyr),
6.79 (d, 2H, Jortho = 8.4, Harom-tolyl), 5.89 (C of ABCXY,
1H, H-2 0), 5.70 (d, 1H, J5,4 = 10.2, H-5), 5.61 (dd, 1H,
J4,5 = 10.2, J4,3 = 4.4, H-4), 5.28 (A of ABCXY, 1H,
J40,20 = 17.2, H-4 0), 5.16 (B of ABCXY, 1H, J30,20 = 10.2,
H-3 0), 4.56 (m, 1H, H-9), 4.50 (s, 1H, H-2), 4.39 (m, 1H,
H-12), 4.13 (X of ABCXY, 1H, J10a,10b = 13.3, J10a,20 = 5.9,
H-1 0a), 4.00 (m, 2H, H-3, H-1 0b), 3.96 (m, 1H, H-200), 3.90
(m, 1H, H-6), 3.18 (m, 1H, H-7a), 3.98 (m, 2H, H-7b, H-
10a), 2.80 (m, 2H, H-1000b, H-300a), 2.62 (m, 1H, H-300b),
2.41 (s, 3H, CH3-tolyl), 2.39 (m, 2H, H-14), 2.33 (s, 3H,
CH3-tolyl), 2.03 (s, 3H, COCH3), 1.91 (m, 2H, H-13); 13C
NMR (75 MHz, 40 �C, DMSO-d6) d 170.4 (s, 2C, CO),
169.4 (s, CO), 147.6 (s, Carom), 145.4 (m, 2C, C–F),
145.6 (s, Carom), 142.2 (s, Carom), 141.9 (m, 2C, C–F), 139.0
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(m, 1C, C–F), 138.1 (s, Carom), 137.3 (s, Carom), 136.4
(s, Carom), 134.4 (d, C-2 0), 133.7 (s, Carom), 132.0 (Carom),
131.6 (d, 2C, Carom), 131.4 (d, 2C, Carom), 130.6 (d, C-5),
130.2 (Carom), 129.2 (Carom), 128.9 (d, 2C, Carom), 128.6 (d,
2C, Carom), 128.1 (Carom), 126.2 (Carom), 122.3 (d,
C-4), 121.4 (d, 2C, Carom), 116.8 (t, CH@CH2), 115.0
(m, C-ipso de C6F5), 97.5 (d, C-2), 67.5 (t, C-1 0), 66.2
(d, C-6), 57.5 (d, C-200), 53.6 (d, C-10), 52.6 (d, C-12), 45.1
(d, C-3), 37.6 (t, C-7), 36.5 (t, C-10; t, C-300), 30.8 (t,
C-13), 29.5 (t, C-14), 21.1 (q, CH3-tolyl), 20.9 (q,
CH3-tolyl), 14.6 (q, CH3S); IR (KBr) m 3429, 3288,
3063, 2956, 2923, 2868, 1639, 1545, 1454, 1384, 1276,
1115, 700; MS (ES+) m/z = 1030 ([(M�OAllyl)Na]+,
100%); Anal. Calcd for C52H54F5N5O12S4: C, 53.64; H,
4.67; N, 6.02; S, 11.02. Found: C, 53.76; H, 4.40; N, 6.31;
S, 10.98.

18. Other peptide-scaffold hybrids (with other scaffolds than
carbohydrate) with sequence similarities to enkephalins
are also calpain inhibitors (Montero, A. Ph.D. Thesis,
Autónoma University, Madrid, July 2004).
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