
New Generation Computing, 20(2002)295-305
Ohmsha, Ltd. and Springer-Verlag

COMPUTING
� 9 Ltd. 2002

The Power of Communication: P Systems with
Symport/Antiport

Andrei P A U N
Department of Computer Science, University of Western Ontario
London, Ontario, Canada N6A 5B7
apaunOcsd, uwo. ca

Gheorghe P A U N
Institute of Mathematics of the Romanian Academy
PO Box 1-764, 70700 Bucure$ti, Romania
gpaun~imar, ro, gp~astor, urv. es

Received 8 March 2002
Revised manuscript received 1 February 2002

Abstract In the attempt to have a framework where the computa-
tion is done by communication only, we consider the biological phenomenon
of trans-membrane transport of couples of chemicals (one say symport when
two chemicals pass together through a membrane, in the same direction, and
antiport when two chemicals pass simultaneously through a membrane, in op-
posite directions). Surprisingly enough, membrane systems without changing
(evolving) the used objects and with the communication based on rules of this
type are computationally complete, and this result is achieved even for pairs
of communicated objects (as encountered in biology). Five membranes are
used; the number of membranes is reduced to two if more than two chemicals
may collaborate when passing through membranes.

Keywords: Molecular Computing, Membrane Computing, Symport, Antiport,
Computational Universality.

w Introduction
P systems are dis t r ibuted parallel comput ing models which s tar t from the

observation tha t the processes which take place in the complex s t ructure of a
living cell can be interpreted as a computa t ion . The basic ingredients are a mem-
brane structure, consisting of several membranes embedded in a main membrane
(called the skin) and delimiting regions (the space between a membrane and all
directly inner membranes, if any inner membrane exists; Figure 1 illustrates

296 A. P~,un a n d G. P ~ u n

membrane

region I ~

skin

Fig. 1 A Membrane Structure

elementary membrane

membrane
/

these notions) where multisets of certain objects are placed; the objects evolve
according to given evolution rules, which are applied non-deterministically (the
rules to be used and the objects to evolve are randomly chosen) in a maximally
parallel manner (in each step, all objects which can evolve must do it). The
objects can also be communicated from a region to another one. In this way, we
get transitions between the configurations of the system. A sequence of transitions
constitutes a computation; with each halting computation we associate a result, the
number of objects in a specified output membrane.

Since these computing devices were introduced 4) several classes of P sys-
tems have been considered. Many of them were proved to be computationally
complete, able to compute all Turing computable sets of natural numbers. When
membrane division, or membrane creation is allowed, NP-complete problems are
shown to be solved in linear time. Details can be found at the web address
http : //bioin format ics. bio. dis co. unimib, it/psystems.

The communication of objects through membranes is one of the most im-
portant ingredients of a P system, and this led to the question to closely investi-
gate the power of communication, to consider "purely communicative" systems,
where the objects are not changed during a computation, but they just change
their place with respect to the compartments of the system. A first attempt
to solve this problem was done in Reference 3) by considering certain "vehicle-
objects" (a model of plasmids, or of vectors from gene cloning) which carry other
objects through membranes. Here we follow another biochemical idea, that of
membrane transport based on pairs of chemicals. When two chemicals can pass
through a membrane only together, in the same direction, the process is called
symport; when the two chemicals pass only with the help of each other, but in
opposite directions, one says that we have antiport- see, e.g., Reference. a)

A mathematical counterpart of these notions is to consider rules of the
form (ab, in), (ab, out) (symport), and (a, in; b, out) (antiport). How much can
we compute by making use of such rules (and no other type of rules)? At the
first sight, not too much, and this makes highly surprising the main result of our
paper: P systems with symport and antiport rules are computationally univer-

The Power of Communication: P Systems with Symport/Antiport 297

sal. The proof uses a system with five membranes in order to simulate a Turing
machine (actually, we simulate matr ix grammars with appearance checking, de-
vices known to be equivalent with Turing machines). The number of membranes
can be reduced to two if more complex rules are allowed, for instance, of the form
(ab, in; cd, out).

The proofs use both symport and antiport rules. Wha t about using only
symport rules? We do not have an answer to this question, but we believe that
when the use of rules is allowed only in the presence of certain "promoters" or
"inhibitors" we can again compute at a significant level.

w P Systems with Symport/Antiport Rules
The language theory notions we use here are standard, and can be found

in many monographs, for instance, in Reference. ~) A membrane structure can
be represented by a string of matching parentheses. A multiset over a set X is a
mapping M : X ~ N U {cxD} (we allow infinite multiplicity). With these simple
prerequisites we are ready now to introduce our variant of P systems.

A P system (of degree m > 1) with symport/antiport rules is a construct

YI = (V ,# ,M1 , . . . ,Mm, Me, R1, . . . ,Rm, io) ,

where: V is the alphabet of objects; # is a membrane structure with m mem-
branes (injectively labeled by positive integers 1, 2 , . . . , m; in this paper, the skin
membrane has always label 1); M 1 , . . . , Mm are the multisets of objects initially
present in the regions of the system, and Me is the multiset of objects present
outside the system, in the environment; the "internal multisets" have finite mul-
tiplicities of objects (hence, we can represent them by strings of objects - the
number of occurrences of each object in a string gives the multiplicity of this
object in the multiset; of course, permutat ions of the same string represent the
same multiset, and the empty multiset corresponds to the empty string, A), while
for each a E V we have either Me(a) : 0 or Me(a) :- c~ (outside the system,
an object is either absent, or present in arbitrarily many copies; thus, Me is
identified by its support, the set of objects which appear at least once - hence
arbitrarily many times - in the environment); R 1 , . . . , Rm are finite sets of rules
of one of the following forms:

- (a, in), (a, out), for a C V (uniport rules);
- (ab, in), (ab, out), for a, b E V (symport rules);
- (a, out; b, in), for a, b E V (antiport rules);

io E { 1 , . . . , m} is an elementary membrane of # (the output membrane).
The meaning of the rules in Ri, 1 < i < m, is obvious: an object a can

enter (exit) the region of membrane i if the rule (a, in) (resp. (a, out)) is in
R~; if (ab, in) or (ab, out) is present in R~, then a and b together can enter or
exit, respectively; finally, if (a, out; b, in) belongs to R/, then a exits region i
and simultaneously b enters it. In order to use such a rule which involves two
objects, both these objects must be present in the respective regions. If in R1 we
have rules (a, in), (ab, in) for objects a, b which are available in the environment
in infinitely many copies, then the computat ion will never stop: using such a

298 A. P ~ u n a n d G. P ~ u n

rule brings into the system arbitrarily many copies of a and b, but because we
assume that the environment is inexhaustible, the rule can be used again.

The multisets of objects present in the m regions of H constitute the
configuration of the system. We pass from a configuration to another configura-
tion by using the rules from R1 , Rm, as customary in P systems: the rules
are applied in the non-deterministic maximally parallel manner, in the sense
that we apply the rules in parallel, to all objects which can be processed, non-
deterministically choosing the rules and the objects. Thus, a transition means
a redistribution of objects among regions (and environment), which is maximal
for the chosen set of rules. A sequence of transitions constitutes a computation;
a computation is successful if it halts, i.e., it reaches a configuration where no
rule can be applied. The result of a successful computation is the number of
objects present in the membrane with label io in the halting configuration. A
computat ion which never halts yields no result. The set of numbers computed
by II is denoted by N(H) . The family of all sets N(H), computed by systems
H of degree at most m > 1 is denoted by NPP,~. Also, we use N R E to denote
the family of recursively enumerable sets of natural numbers. (If we distinguish
among the objects present in the output membrane, then we can compute vectors
of natural numbers, hence relations, as done in many papers about P systems.
The extension is obvious, so we do not enter here into details.)

w The Computat ional Power
We will prove tha t P systems with the communication done by symport

and antiport rules (even with a small number of membranes) are able to sim-
ulate Turing machines. In proofs we need the notion of a matrix grammar with
appearance checking, a class of controlled context-free Chomsky grammars much
investigated in formal language theory, see References. 2,5) Such a g rammar is
a construct G = (N , T , S , M , F) , where N , T are disjoint alphabets, S E N,
M is a finite set of sequences of the form (A1 --* xl , . . . , An --~ x,0, n _> 1,
of context-free rules over N U T (with Ai E N, xi E (N [3 T)*, in all cases),
and F is a set of occurrences of rules in M. For w, z E (N U T)* we write
w ~ z if there is a matr ix (A1 --~ xl , . . . , A n -~ x,~) in M and the strings
wi E (N[3T)*, 1 <_ i _< n + l , such tha t w = wl, z = wn+l, and, for all 1 <_ i <_ n,
ith r ~ . t w~ r e t . �9 e e w i = w i A ~ w ~ , w i + l = w i x i i , f o sore wi,w i E (N [3 T) , o r w i = w i + l ,

Ai does not appear in w~, and the rule Ai --~ xi appears in F. (The rules of a
matrix are applied in order, possibly skipping the rules in F if they cannot be
applied - therefore we say that these rules are applied in the appearance checking
mode.)

The language generated by G is defined by L(a) = {w e T* I S ~ * w}.
The family of languages of this form is denoted by MATac. I t is known tha t
matrix grammars with appearance checking generate precisely the family R E of
recursively enumerable languages.

A matr ix g rammar G = (N, T, S, M, F) is said to be in the binary normal
form if N = N1 [3 N2 (J {S, #} , with these three sets mutually disjoint, and the
matrices in M are in one of the following forms: (i) (S --* XA) , with X E N1, A E

The Power of Communication: P Systems with Symport /Antiport 299

N2, (ii) (X --*]I, A --~ x), with X, Y �9 N~, A �9 N2, x �9 (N2 (3 T)*, Ix[<_ 2, (iii)
(X -o Y,A ~ #) , with X , Y �9 N~,A �9 N2, and (iv) (X --~ A,A --* x), with
X �9 N~, A �9 N2, and x �9 T*, Ixl <_ 2. There is only one matr ix of type (i) and
F consists exactly of all rules A --* # appearing in matrices of type (iii); ~ is a
trap-symbol, once introduced, it is never removed. A matrix of type (iv) is used
only once, in the last step of a derivation.

It is known that for each matr ix grammar there is an equivalent matrix
grammar in the binary normal form - see Lemma 1.3.7 from Reference. ~)

Theorem ~.1
N P P m = N R E , for all m > 5.

Proof
The inclusions N P P m C NPPr , r >_ m > 1, are obvious, and N P P m C_
N R E , m > 1, can be proved in a straightforward manner, so we have only
to prove the inclusion N R E C NPPh. To this aim, we use the equality R E -=
MATac, with the obvious consequence that any set from N R E is the length
set of a language from MATac. In particular, we can consider a language
over the one-letter alphabet. Therefore, we can start from a matr ix grammar
G -- (N, T, S, M, F) with T -- {a}, in the binary normal form. Without any
loss of the generality, we may assume that there is only one terminal matrix, of
the form (Z --*)~, B --* A), for fixed Z E N1, B E N2 (we replace each terminal
matrix (X -~ ~, A -~ ha) of G by (Z --* X ' , A ~ hA'), (X ' --* Z, A' --* aB), each
matrix (X -~ A, A -~ a) by (X ~ Z, A --* aB), and each matrix (X ~ A, A -~ A)
by (X --~ Z, A --~ B), and then add the unique terminal matrix (Z -* A, B --* A)).

Assume that M contains the matrices mi : (X ~ Y, A ~ (~fl), X, Y E
N] ,A E N2, ol,~ e N2 U {a,)~}, for i = 1 , . . . , k , and mi : (X -~ Y , A --* #) ,
X , Y G N 1 , A E N2, for i = k + 1 , . . . , n , for some k > 1,n > k. Moreover,
denote the initial matrix (S --* X A) of G by (S --* XoAo) and label by m,~+z
the terminal matrix (Z --* A, B -*)~).

We construct the system H = (V, #, M I , . . . , Ms, Me, R I , . - . , Rh, 5), with

= U {di, d~, di , d~] 1 < i < n + 1}, V N I U N 2 U { a , c , f , te, t2,ta} , , ,rl

' = [1[e[314]413]:[5]511,
MI = XoAo, Me = te, M3 = c4t3,
M4 r . I l l I I t . r = dldzdzd 1 ...d,~+ldn+ldn+ld,~+z, M5 = ~,
Me= NiUNeU{a,/,t },
R1 = {(diX, out), (d~A, out), (d~Id~',out),

(di, out; re, in), (d~, out; te, in), (d~ r, out; re, in), (d~", out; re, in),
(diY, in), (d~, in), (d~' ~, in), (d'('~, in)] 1 < i < k,
mi : (X ~ Y , A ~ ~ 3) , X , Y C Ne, a, 13 E N2 U {a, A}, 1 < i < k}

U {(dn+lZ, Out), (d~+lB, out), (d~+l,out; f , in), (d~_ 1, out),
(d,~+l, out; re, in), (d~+l, out; re, in)}

t! II! If tit �9 U {(diX, out), (di d i ,out), (diY, in), (d i d i ,zn),
(di, out; re, in), (d~', out; t~, in), (d~", out; t~, in)] for
mi : (X ~ Y , A ~ #) , X , Y �9 N~ ,A �9 Ne, k + 1 < i < n},

3 0 0 A. P~,un a n d G. P~,un

R2 { (didO, out), ' '" = (did i , out),
(di t2,out) , d I I d ' t (i t 2 , 0 u t) , ~ i 2,0ut) , (d~'t2,0ut) I 1 < i < n + 1}

U ! H ! �9 (d,d'(, in) l 1 < i < n}
U {(d~A, in)] m i : (X - - ~ Y , A ~ 4 C) , k + l < i < n }
U { (f A , in) , (A t 2 , 0 u t) [a E N2} U{(t3 ,0u t) } ,

R3 {(didO, out), , m = (d i d i , out),
' (d i t3, out) , '" (dit3, out) , (dit3, out), " 1} (d i t3, out) L l < i < n +

! l i t �9 U {(did i , In) , (did~',in) I 1 < i < n} ,
R4 =- {(di, out; c, in), (d',, out; c, in) , (d~', out; c, in), (d~', out; c, in) I

l < i < n + l }
U {(c, out;di , in), (c, out;d~, in) , (c, out;d'i ' , in), (c, out;d~", in) l

l < i < n } ,
R5 = {(a, in), (t2 , in) , (t2, out), (t3, in), (t3,out) , (t~, in), (t~,out)} .

Before examining in some detail the work of this system, let us point
out some general facts. The symbols t2 , t3 , te are trap-symbols, once arriving
in the skin membrane, they will pass forever through membrane 5, hence the
computat ion will never halt (note tha t the subscripts of these symbols indicate
their place in the initial configuration of the system).

Then, with each matr ix mi of G we have associated a four-tuple of sym-
l! lit bols, di,d~,d i ,d~ ,1 < i < n + 1 (let us call them "controllers"), which will

control the simulation of the matr ix mi by a series of transitions among con-
figurations of H. These symbols are released from membrane 4 by means of
the four copies of the symbol c (which can be considered a "trigger"). Crucial
for the success of the simulation is the fact that , if from membrane 4 we release
symbols di, d~, d~, d~" with at least two of the subscripts i, j , h, l different, then one of
the trap-symbols will arrive to the skin membrane, hence the computat ion will never
stop (the t rap-symbols will pass forever back and forth through membrane 5).
This assertion is easy to check: we can exit membrane 3 only with two pairs

I l l I l l did i and dhd h , hence m this way we check the equahtms z = 3 and h = l; then,
I ! ! I l l we can exit membrane 2 only with the pairs did i and d~d~ , hence in way we

also check the equalities i = h and j = 1. If no such pair can be formed, or only
one pair can be formed, then the remaining symbols have to use the rules of

(dhtr , out), '" the forms (dit~, out), (d~tr, out), " (d t t~, out), with r = 2, 3, for the
corresponding membranes r, and in this way t3 and/or t 2 will be released.

At each moment when the four "controllers" di, i , iii di, d i , d i exit a membrane
4, 3, 2, they can return back, but this changes nothing, hence the computat ion

I I I 1II must continue. Moreover, as long as copies of c or of di, d i, d i , d i are outside
membrane 4, the computat ion must continue.

Now, the simulation of matrices from M develops differently for (nonter-
minal) matrices without appearance checking rules, for matrices with appear-
ance checking rules, and for the terminal matrix. After simulating matrices of

d d I d" /Ii the first two types, the symbols i, i, i , di can return to membrane 3, can
release the "triggers" c from membrane 4, and hence the process can be con-
tinued by simulating another matrix. However, after simulating the terminal
matrix, the "controllers" are left in the environment, and the computat ion will
stop - providing tha t no nonterminal is present in the system, otherwise the

T h e Power of Communica t ion : P Sys tems wi th S y m p o r t / A n t i p o r t 301

"checker" f , just introduced when simulating the matrix mn+l, will bring a
symbol A E N2 to membrane 2, and in this way the trap-symbol t2 is released,
by the rule (At2, out) E R2.

Another important general observation is that the simulation of matrices
mi, 1 < i < n, should be complete, in the sense that both their rules should
be simulated, otherwise the trap-symbols are introduced; this is ensured by the
rules which exchange symbols di, d~, d~ I, d~" with re, which are present in R1 for all
i < i < n - except that for k + 1 < i < n we do not have the rule (d~, out; te, in)
in R1, because d~ has the task to check the presence of a specific symbol in the
skin region, as we will immediately see.

In any moment, any copy of a is sent to the output membrane (hence
from now on we will ignore this symbol).

If Ill Consider now a configuration where the symbols di, d~, d i , d i , for some
1 < i < k such that mi : (X --* Y, A -~ ~/3), have arrived in the skin membrane.
B y using the rules (di X , out), (d~ A, out), (d~' d~", out) and then (di Y, in), (d~, in),
(di o~, m) , '" ii �9 (d i 13, in) from R1, we correctly simulate the matrix mi (note that each
of a,/3 can be empty). If, say, only the rule (diX, out) is used, but d~ returns
to membrane 2 together with d~" (by means of the rule (d~d~", in) C R2), then
d~ I will have to use the rule (d~ I, out; t~, in) E R1, and the trap-symbol te gets
in. The same result is obtained when we simulate only the second rule of the
matrix mi.

I! I t ! After simulating the matrix mi, the symbols di, d~, di , d i can simulate
again the same matr ix (if X = Y), and this is correct with respect to G, or they
can return to membrane 3, and from here to membrane 4, releasing the four
copies of the symbol c, which have waited in membrane 4 during the simulation.

II I,I When we start by a four-tuple di,d~,d~ ,d i with k + 1 < i < n, hence
corresponding to a matrix mi : (X ~ II, A --~ #) , then again di exits the system
(by the rule (diX, out) E R1), but, if any copy of A is present in membrane
1, then the symbol d~ has to use the rule (d~A, in) E R2; in this way, A gets
into membrane 2 and will immediately exit together with the trap-symbol t2. If
no copy of A is present in the skin membrane, then dli waits. In the next step,

II Ill II It/ d~ , d i will return from the environment, hence all four symbols di, d~, d i , d i can
return to membrane 4 (they can simulate again the matrix mi only if X = Y,
but this changes nothing).

After simulating a matrix mi with 1 < i < n, we return to a configuration
as that we have started with, with the auxiliary symbols "stored" in the central
membranes and all symbols from N1 U N2 in the skin membrane, hence the
process can be iterated.

When simulating the terminal matrix mn+l : (Z --* A, B --* A), the four
I II Ill symbols dn+l, dn+l, dn+l, dn+l are brought to the skin membrane as above, dn+l

! and d,~+l check whether or not Z and B are present (otherwise the trap-symbol t~
is introduced), d~+ 1 is exchanged for f (by means of the rule " (dn+l, out, f , in) E
R1), and d~_ 1 just exits the system. If any symbol from N2 is still present in
the skin membrane, then it will go together with f to membrane 2, and will
return together with t2; if no symbol from N2 is present, that is, the derivation
in G is terminal, then f remains unused, and the computation stops (none of
the symbols ~ . m dn+l, d,~+l, dn+l, dn+l is brought back from the environment, hence

302 A. P~,un and G. Phun

there is no way to release again the "trigger" c from membrane 4).
Having in mind the explanations from the beginning of this discussion

about the work of the system H, the reader can easily check other possible
branches of the computations in H, always finding that the only way to get a
halting computation is to correctly simulate derivations in G. Consequently,
N(1-I) = {m I am e L(G)}, and this concludes the proof. �9

w More Complex Rules
In the previous section we have tried to be "realistic," using rules of the

forms encountered in biology, with at most two chemicals collaborating in their
passage through membranes. From a mathematical point of view it is natural
to consider rules of a general form, (u, out; v, in), with u and v strings of an
arbitrary length. The pair of numbers (lul, Ivl) is called the radius of the rule. In
the previous section we have used only rules of the radius (1, 0), (2, 0), (0, 1), (0,
2), (1, 1). As it is expected, when using rules of a larger radius, characterizations
of N R E can be obtained by P systems with a number of membranes smaller
than in Theorem 3.1. Actually, two membranes suffice, and the price for this
decrease in the number of membranes is not too big: rules of radius at most
(componentwise) (2, 2) suffice.

Let us denote by NPPm(r, s) the family of sets of natural numbers com-
puted by P systems with at most m > 1 membranes, using rules of radius
componentwise at most (r, s). When one of m, r, s is not bounded, we replace it
with *.

With the present terminology, P systems with carriers can be considered
as systems with symport and antiport communication, and the main result from
Reference 3) says that rules of radius at most (3, 3) suffice. The following result
is stronger from this point of view.

Theorem 4.1
NPPm(r, s) = N R E for all m ~ 2 and (r, s) componentwise larger than or equal
to (2, 2).

Proof
Again, we only have to prove the inclusion N R E C_ NPP2(2, 2). Let G =
(N, {a}, S, M, F) be a matrix grammar with appearance checking in the binary
normal form, and containing a unique terminal matrix, (Z --~ A, B --* A). With
the same notations as in the proof of Theorem 3.1, we construct the P system
H = (V, [112]211,M1,M2, M~,R1,R2,2), with

y ~ _

M~=
M~=
R1 =

U

N1 U N2 U {a ,c , f ,g ,h , t } U {ci,c~,di I 1 < i < n + 1},
cXoAo, M2 = A,
N1 U N2 U { a , f , g , h , t } U {ci, c~,d~ I 1 < i < n},
{(cX, out; ciY', in), (ciA, out; cc~, in), (c~, out; u, in), (ci, out; t, in) [
ms : (X --* Y,A ~ u) , l < i < k}
{(C, OUt; t, in), (cZ, out; CnTlf , in), (cn+lA, out), (c~+1, out; t, in)}

The Power of Communication: P Systems with Symport/Antiport 303

U {(cX, out; cidi, in), (di, out; Yh, in), (ciA, out; t, in),
(h, out; cg, in), (cig, out) I mi : (X ~ Y, A ~ #), k + 1 < i < n}

U {(fD, out;t, in) lD e N2},
R2 : {(a, in), (t, in), (t, out)}.

The symbols c, ci, c~ control the simulation of matrices mi, 1 < i < k, in
the following way. After using the rule (cX, out;ciY, in) E R1, we have ci in
the system. If the rule (ciA, out; c~c, in) C R1 cannot be used, then the symbol
ci will bring the trap-symbol t into the system, and this symbol will go forever
back and forth through membrane 2, hence the computation will never finish.
If the rule (c~A, out; c~c, in) E R1 is used, then at the next step c~ will exit,
bringing into the system the string u, which completes the simulation of the
matrix mi : (X --~ Y, A --* u).

In the case of the terminal matrix, we bring the symbols cn+l, f in the
system, c,~+1 simulates the second rule of the matrix, and f checks whether or not
the derivation was a terminal one. In the negative case, the rules (fD, out; t, in) E
R1, for D E N2, will bring the trap-symbol in the system.

If we start with a rule of the form (cX, out; cidi, in) E R1, for some mi :
(X --~ Y, A --* #) , k + 1 < i < n, then at the next step we have to use the rule
(di,out;Yh, in) E R1. If in the skin membrane there is any copy of A, then
the rule (ciA, out; t, in) has to be used, and the computation will never finish,
because of the rules (t, in), (t, out) from R2. If no copy of A is present, then ci
waits in the skin membrane. At the next step, h exits and brings cg inside. Now,
together with g, the symbol ci can leave the system. In this way, the application
of matrix mi was simulated.

In all cases the symbol c is again available, hence the process can be
iterated. Consequently, N(H) -- {m I am C L(G)}. (It is worth noting that the
main part of the work of our system is done by the interaction between the skin
membrane and the environment, membrane 2 is used only for storing the result
of the computation and in order to prevent the "wrong" computations, by using
forever the trap-symbol after introducing it into the system.) �9

As it is also the case for Theorem 3.1, we do not know whether this result
is optimal (this time, we have to consider not only the number of membranes,
but also the radius of the rules), but systems of simpler forms seem not to be
too powerful. The easy proof of the next result is left to the reader.

Theorem 4.2
Families NPPI(*, 1) ,NPP.(. ,O),NPP.(O, *) contain only finite sets of num-
bers, but families NPPI(1, 2) and NPP2(1, 1) contain infinite sets of numbers.

w Final Remarks
Starting from the biological observation that the membrane transport is

often performed by pairs of chemicals which help each other in this process (called
in biology symport or antiport), we have considered a purely communicative
variant of P systems, where no object is changed during the computation, but

304 A. P~,un and G. P~un

only the places of objects are changed. This means that the conservation law
is observed in this framework (which is not necessarily the case for most of the
previously considered classes of P systems). Surprisingly enough, this kind of
"osmotic computation" proves to be universal, all Turing computable sets of
numbers can be computed in this way. Moreover, this is done by a class of P
systems with the rules strictly corresponding to the case from biology, where at
most two chemical compounds are collaborating in passing through membranes.

Five membranes were used in our proof; the number of membranes can
be decreased to two if more complex (antiport) rules are allowed, that is, with
more than two objects collaborating in their passage through membranes. This
indicates an expected trade-off between the number of membranes and the com-
plexity (the radius) of symport /ant ipor t rules - this trade-off deserves to be
further investigated.

From a mathematical point of view, it also remains to be investigated the
case when only symport rules are used, that is, only rules (u, in), (u, out), for u
consisting of at most two symbols. Because we feel that such rules are not very
powerful, a possible way to increase their power is to apply them conditionally,
under the control of permitting or forbidding symbols. Specifically, a rule (u, in)b,
or (u, out)b associated with a region i can be used only if b is present in this
membrane. This is somewhat similar to the case of antiport rules, as b supports
the exit of u, but not leaving the region at the same time with u. Similarly, we
can consider forbidding symbols, in the presence of which a rule cannot be used.
This corresponds to the promoters and inhibitors known from biology, hence it is
again a "realistic" variant. How powerful it is, it remains to be investigated. We
expect that the family of sets of numbers computed by P systems which use only
symport rules applied in a conditional manner is significantly large. For instance,
using only permitting conditions we can already compute non-semilinear sets of
numbers. We will return to this topic in a forthcoming paper.

Acknowledgements
Many thanks are due to two anonymous referees, for a very careful reading

of a previous version of this paper.

References
1) Alberts, B., et al., Essential Cell Biology. An Introduction to the Molecular Biology

of the Cell, Garland Publ. Inc., New York, London, 1998.

2) Dassow, J. and P~un, Gh., Regulated Rewriting in Formal Language Theory,
Springer-Verlag, Berlin, 1989.

3) Martin-Vide, C., P~un, Gh. and Rozenberg, G., "Membrane Systems with
Carriers," Theoretical Computer Science, 270, pp. 779-796, 2002.

4) P~un, Gh., "Computing with Membranes," Journal of Computer and System Sci-
ences, 61, 1, pp. 108-143, 2000.

5) Handbook of Formal Languages (Rozenberg, G. and Salomaa, A., eds.), Springer-
Verlag, Berlin, 1997.

The Power of Communication: P Systems with Symport/Antiport 305

Andrei P~un: He graduated the Faculty of Mathematics of
Bucharest University in 1998, received his M.Sc. degree from The
University of Western Ontario in 1999, and since then he is a
PhD student in the Computer Science Depar tment of Univer-
sity of Western Ontario, London, Canada (under the guidance of
prof. Sheng Yu). The topic of his thesis is Molecular Computing
(especially, DNA and Membrane Computing), but his research
interests also include neural networks, implementing automata,
combinatorics on words.

Gheorghe P~un: (the proud father of two sons, including the first
author of this paper) He is a member of the Romanian Academy,
working as a senior researcher in the Inst i tute of Mathematics
of the Romanian Academy, Bucharest, and as a Ramon y Cajal
researcher in Rovira i Virgili University of Tarragona, Spain. He
is one of the most active authors in (the theory of) DNA Com-
puting, (co)author of many papers in this area, (co)author and
(co)editor of several books. In 1998 he has ini t iated the area
of Membrane Computing. Other research interests: regulated
rewriting, grammar systems, contextual grammars, combinatorics
on words, computat ional linguistics.

