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Abstract In the attempt to have a framework where the computa- 
tion is done by communication only, we consider the biological phenomenon 
of trans-membrane transport of couples of chemicals (one say symport when 
two chemicals pass together through a membrane, in the same direction, and 
antiport when two chemicals pass simultaneously through a membrane, in op- 
posite directions). Surprisingly enough, membrane systems without changing 
(evolving) the used objects and with the communication based on rules of this 
type are computationally complete, and this result is achieved even for pairs 
of communicated objects (as encountered in biology). Five membranes are 
used; the number of membranes is reduced to two if more than two chemicals 
may collaborate when passing through membranes. 

Keywords: Molecular Computing, Membrane Computing, Symport, Antiport, 
Computational Universality. 

w Introduction 
P systems are dis t r ibuted parallel comput ing  models which s tar t  from the 

observation tha t  the  processes which take place in the complex s t ructure  of  a 
living cell can be interpreted as a computa t ion .  The  basic ingredients are a mem- 
brane structure, consisting of several membranes  embedded in a main  membrane  
(called the skin) and delimiting regions (the space between a membrane  and all 
directly inner membranes,  if any inner membrane  exists; Figure 1 illustrates 
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these notions) where multisets of certain objects are placed; the objects evolve 
according to given evolution rules, which are applied non-deterministically (the 
rules to be used and the objects to evolve are randomly chosen) in a maximally 
parallel manner (in each step, all objects which can evolve must do it). The 
objects can also be communicated from a region to another one. In this way, we 
get transitions between the configurations of the system. A sequence of transitions 
constitutes a computation; with each halting computation we associate a result, the 
number of objects in a specified output membrane. 

Since these computing devices were introduced 4) several classes of P sys- 
tems have been considered. Many of them were proved to be computationally 
complete, able to compute all Turing computable sets of natural numbers. When 
membrane division, or membrane creation is allowed, NP-complete problems are 
shown to be solved in linear time. Details can be found at the web address 
http : //bioin format ics. bio. dis co. unimib, it/psystems. 

The communication of objects through membranes is one of the most im- 
portant ingredients of a P system, and this led to the question to closely investi- 
gate the power of communication, to consider "purely communicative" systems, 
where the objects are not changed during a computation, but they just change 
their place with respect to the compartments of the system. A first attempt 
to solve this problem was done in Reference 3) by considering certain "vehicle- 
objects" (a model of plasmids, or of vectors from gene cloning) which carry other 
objects through membranes. Here we follow another biochemical idea, that of 
membrane transport based on pairs of chemicals. When two chemicals can pass 
through a membrane only together, in the same direction, the process is called 
symport; when the two chemicals pass only with the help of each other, but in 
opposite directions, one says that we have antiport- see, e.g., Reference. a) 

A mathematical counterpart of these notions is to consider rules of the 
form (ab, in), (ab, out) (symport), and (a, in; b, out) (antiport). How much can 
we compute by making use of such rules (and no other type of rules)? At the 
first sight, not too much, and this makes highly surprising the main result of our 
paper: P systems with symport and antiport rules are computationally univer- 
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sal. The proof uses a system with five membranes in order to simulate a Turing 
machine (actually, we simulate matr ix  grammars  with appearance checking, de- 
vices known to be equivalent with Turing machines). The number of membranes 
can be reduced to two if more complex rules are allowed, for instance, of the form 
( ab, in; cd, out). 

The proofs use both symport  and antiport  rules. Wha t  about  using only 
symport  rules? We do not have an answer to this question, but we believe that  
when the use of rules is allowed only in the presence of certain "promoters" or 
"inhibitors" we can again compute at a significant level. 

w P Systems with Symport/Antiport Rules 
The language theory notions we use here are standard, and can be found 

in many monographs,  for instance, in Reference. ~) A membrane  structure can 
be represented by a string of matching parentheses. A multiset over a set X is a 
mapping M : X ~ N U {cxD} (we allow infinite multiplicity). With  these simple 
prerequisites we are ready now to introduce our variant of P systems. 

A P system (of degree m > 1) with symport/antiport rules is a construct 

YI = (V ,# ,M1 , . . . ,Mm,  Me, R1, . . . ,Rm, io) ,  

where: V is the alphabet  of objects; # is a membrane structure with m mem- 
branes (injectively labeled by positive integers 1, 2 , . . . ,  m; in this paper, the skin 
membrane has always label 1); M 1 , . . . ,  Mm are the multisets of objects initially 
present in the regions of the system, and Me is the multiset of objects present 
outside the system, in the environment; the "internal multisets" have finite mul- 
tiplicities of objects (hence, we can represent them by strings of objects - the 
number of occurrences of each object in a string gives the multiplicity of this 
object in the multiset; of course, permutat ions of the same string represent the 
same multiset, and the empty multiset corresponds to the empty  string, A), while 
for each a E V we have either Me(a) : 0 or Me(a) :- c~ (outside the system, 
an object is either absent, or present in arbitrarily many copies; thus, Me is 
identified by its support, the set of objects which appear at least once - hence 
arbitrarily many times - in the environment); R 1 , . . . ,  Rm are finite sets of rules 
of one of the following forms: 

- (a, in), (a, out), for a C V (uniport rules); 
- (ab, in), (ab, out), for a, b E V (symport rules); 
- (a, out; b, in), for a, b E V (antiport rules); 

io E { 1 , . . . ,  m} is an elementary membrane  of # (the output  membrane).  
The meaning of the rules in Ri, 1 < i < m, is obvious: an object a can 

enter (exit) the region of membrane i if the rule (a, in) (resp. (a, out)) is in 
R~; if (ab, in) or (ab, out) is present in R~, then a and b together can enter or 
exit, respectively; finally, if (a, out; b, in) belongs to R/, then a exits region i 
and simultaneously b enters it. In order to use such a rule which involves two 
objects, both  these objects must be present in the respective regions. If in R1 we 
have rules (a, in), (ab, in) for objects a, b which are available in the environment 
in infinitely many  copies, then the computat ion will never stop: using such a 
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rule brings into the system arbitrarily many  copies of a and b, but  because we 
assume that  the environment is inexhaustible, the rule can be used again. 

The multisets of objects present in the m regions of H constitute the 
configuration of the system. We pass from a configuration to another configura- 
tion by using the rules from R1 . . . .  , Rm, as customary in P systems: the rules 
are applied in the non-deterministic maximally parallel manner,  in the sense 
that  we apply the rules in parallel, to all objects which can be processed, non- 
deterministically choosing the rules and the objects. Thus, a transition means 
a redistribution of objects among regions (and environment), which is maximal 
for the chosen set of rules. A sequence of transitions constitutes a computation; 
a computation is successful if it halts, i.e., it reaches a configuration where no 
rule can be applied. The result of a successful computation is the number of 
objects present in the membrane with label io in the halting configuration. A 
computat ion which never halts yields no result. The set of numbers computed 
by II  is denoted by N(H) .  The family of all sets N(H),  computed by systems 
H of degree at most  m > 1 is denoted by NPP,~. Also, we use N R E  to denote 
the family of recursively enumerable sets of natural  numbers. (If we distinguish 
among the objects present in the output  membrane,  then we can compute vectors 
of natural numbers, hence relations, as done in many papers about  P systems. 
The extension is obvious, so we do not enter here into details.) 

w The Computat ional  Power 
We will prove tha t  P systems with the communication done by symport  

and antiport  rules (even with a small number  of membranes) are able to sim- 
ulate Turing machines. In proofs we need the notion of a matrix grammar with 
appearance checking, a class of controlled context-free Chomsky grammars  much 
investigated in formal language theory, see References. 2,5) Such a g rammar  is 
a construct G = ( N , T , S , M , F ) ,  where N , T  are disjoint alphabets,  S E N,  
M is a finite set of sequences of the form (A1 --* xl ,  . . .  , An --~ x,0,  n _> 1, 
of context-free rules over N U T (with Ai E N, xi E (N [3 T)*, in all cases), 
and F is a set of occurrences of rules in M.  For w, z E (N U T)* we write 
w ~ z if there is a matr ix  (A1 --~ xl ,  . . . , A n  -~ x,~) in M and the strings 
wi E (N[3T)*, 1 <_ i _< n + l ,  such tha t  w = wl, z = wn+l, and, for all 1 <_ i <_ n, 
ith r ~ . t w~ r e t . �9 e e w i = w i A ~ w ~ , w i + l = w i x i  i , f o  sore wi,w i E ( N [ 3 T ) , o r w i = w i + l ,  

Ai does not appear  in w~, and the rule Ai --~ xi appears in F.  (The rules of a 
matrix are applied in order, possibly skipping the rules in F if they cannot be 
applied - therefore we say that  these rules are applied in the appearance checking 
mode.) 

The language generated by G is defined by L(a) = {w e T* I S ~ *  w}. 
The family of languages of this form is denoted by MATac. I t  is known tha t  
matrix grammars  with appearance checking generate precisely the family R E  of 
recursively enumerable languages. 

A matr ix  g rammar  G = (N, T, S, M, F )  is said to be in the binary normal 
form if N = N1 [3 N2 (J {S, #} ,  with these three sets mutually disjoint, and the 
matrices in M are in one of the following forms: (i) (S --* XA) ,  with X E N1, A E 
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N2, (ii) (X --* ]I, A --~ x), with X, Y �9 N~, A �9 N2, x �9 (N2 (3 T)*, Ix[ <_ 2, (iii) 
(X -o Y,A ~ # ) ,  with X , Y  �9 N~,A �9 N2, and (iv) (X --~ A,A --* x), with 
X �9 N~, A �9 N2, and x �9 T*, Ixl <_ 2. There is only one matr ix of type (i) and 
F consists exactly of all rules A --* # appearing in matrices of type (iii); ~ is a 
trap-symbol, once introduced, it is never removed. A matrix of type (iv) is used 
only once, in the last step of a derivation. 

It is known that  for each matr ix grammar there is an equivalent matrix 
grammar in the binary normal form - see Lemma 1.3.7 from Reference. ~) 

Theorem ~.1 
N P P m  = N R E ,  for all m > 5. 

Proof 
The inclusions N P P m  C NPPr ,  r >_ m > 1, are obvious, and N P P m  C_ 
N R E ,  m > 1, can be proved in a straightforward manner, so we have only 
to prove the inclusion N R E  C NPPh.  To this aim, we use the equality R E  -= 
MATac, with the obvious consequence that  any set from N R E  is the length 
set of a language from MATac. In particular, we can consider a language 
over the one-letter alphabet. Therefore, we can start from a matr ix grammar 
G -- (N, T, S, M, F)  with T -- {a}, in the binary normal form. Without any 
loss of the generality, we may assume that  there is only one terminal matrix, of 
the form (Z --* )~, B --* A), for fixed Z E N1, B E N2 (we replace each terminal 
matrix ( X  -~ ~, A -~ ha) of G by ( Z  --* X ' ,  A ~ hA'), (X '  --* Z, A' --* aB),  each 
matrix (X -~ A, A -~ a) by (X  ~ Z, A --* aB),  and each matrix (X ~ A, A -~ A) 
by (X --~ Z, A --~ B), and then add the unique terminal matrix (Z -* A, B --* A)). 

Assume that  M contains the matrices mi : (X ~ Y, A ~ (~fl), X, Y E 
N] ,A  E N2, ol,~ e N2 U {a,)~}, for i = 1 , . . . , k ,  and mi : ( X  -~ Y , A  --* # ) ,  
X , Y  G N 1 , A  E N2, for i = k +  1 , . . . , n ,  for some k > 1,n > k. Moreover, 
denote the initial matrix (S --* X A )  of G by (S  --* XoAo) and label by m,~+z 
the terminal matrix (Z --* A, B -* )~). 

We construct the system H = (V, #, M I , . . . ,  Ms, Me, R I , . - . ,  Rh, 5), with 

= U {di, d~, di ,  d~ ] 1 < i < n + 1}, V N I U N 2 U { a , c , f ,  te, t2,ta} , , ,rl 

' = [1[e[314 ]413]:[5 ]511, 
MI = XoAo, Me = te, M3 = c4t3, 
M4 r . I l l  I I t  . r  = dldzdzd 1 ...d,~+ldn+ldn+ld,~+z, M5 = ~, 
Me= NiUNeU{a,/,t }, 
R1 = {(diX,  out), (d~A, out), (d~Id~',out), 

(di, out; re, in), (d~, out; te, in), (d~ r, out; re, in), (d~", out; re, in), 
(diY, in), (d~, in), (d~' ~, in), (d'('~, in) ] 1 < i < k, 
mi : ( X  ~ Y , A  ~ ~ 3 ) , X , Y  C Ne, a, 13 E N2 U {a, A}, 1 < i < k} 

U {(dn+lZ, Out), (d~+lB, out), (d~+l,out; f ,  in), (d~_ 1, out), 
(d,~+l, out; re, in), (d~+l, out; re, in)}  

t! II! If tit �9 U {(diX,  out), (di d i ,out), (diY, in), (d i d i ,zn), 
(di, out; re, in), (d~', out; t~, in), (d~", out; t~, in) ] for 
mi : ( X  ~ Y , A  ~ # ) , X , Y  �9 N~ ,A  �9 Ne, k + 1 < i < n}, 
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R2 { (didO, out),  ' '" = (did i , out),  
(di t2,out) ,  d I I d ' t  ( i t 2 , 0 u t ) ,  ~ i 2,0ut) ,  (d~'t2,0ut) I 1 < i < n + 1} 

U ! H !  �9 (d,d'(, in) l 1 < i < n} 
U {(d~A, in) ] m i : ( X - - ~ Y , A ~ 4 C ) , k + l < i < n }  
U { ( f A ,  in) ,  ( A t 2 , 0 u t ) [ a  E N2} U{( t3 ,0u t ) } ,  

R3 {(didO, out),  , m = (d i d i , out),  
' (d i t3, out) ,  '" (dit3, out) ,  (dit3, out),  " 1} (d i t3, out) L l < i < n + 

! l i t  �9 U {(did i , In) ,  (did~',in) I 1 < i < n} ,  
R4 =- {(di, out; c, in),  (d',, out; c, in) ,  (d~', out; c, in),  (d~', out; c, in)  I 

l < i < n + l }  
U {(c, out;di ,  in),  (c, out;d~, in) ,  (c, out;d'i ' , in), (c, out;d~", in)  l 

l < i < n } ,  
R5 = {(a, in),  ( t2 , in) ,  (t2, out),  (t3, in),  ( t3,out) ,  ( t~, in),  ( t~,out)} .  

Before examining in some detail the work of this system, let us point 
out some general facts. The symbols t2 , t3 , te  are trap-symbols,  once arriving 
in the skin membrane,  they will pass forever through membrane 5, hence the 
computat ion will never halt  (note tha t  the subscripts of these symbols indicate 
their place in the initial configuration of the system). 

Then, with each matr ix  mi of G we have associated a four-tuple of sym- 
l! lit bols, di,d~,d i ,d~ ,1 < i < n + 1 (let us call them "controllers"), which will 

control the simulation of the matr ix  mi by a series of transitions among con- 
figurations of H. These symbols are released from membrane 4 by means of 
the four copies of the symbol c (which can be considered a "trigger"). Crucial 
for the success of the simulation is the fact that ,  if  from membrane 4 we release 
symbols di, d~, d~, d~" with at least two of  the subscripts i, j ,  h, l different, then one of  
the trap-symbols will arrive to the skin membrane, hence the computat ion will never 
stop (the t rap-symbols  will pass forever back and forth through membrane  5). 
This assertion is easy to check: we can exit membrane 3 only with two pairs 

I l l  I l l  . . . . . .  did i and dhd h , hence m this way we check the equahtms z = 3 and h = l; then, 
I !  ! I l l  we can exit membrane  2 only with the pairs did i and d~d~ , hence in way we 

also check the equalities i = h and j = 1. If no such pair can be formed, or only 
one pair can be formed, then the remaining symbols have to use the rules of 

(dhtr , out),  '" the forms (dit~, out),  (d~tr, out),  " (d t t~, out),  with r = 2, 3, for the 
corresponding membranes  r, and in this way t3 and/or  t 2 will be released. 

At each moment  when the four "controllers" di, i , iii di, d i , d i exit a membrane 
4, 3, 2, they can return back, but this changes nothing, hence the computat ion 

I I I  1II  must continue. Moreover, as long as copies of c or of di, d i, d i , d i are outside 
membrane 4, the computat ion must continue. 

Now, the simulation of matrices from M develops differently for (nonter- 
minal) matrices without appearance checking rules, for matrices with appear- 
ance checking rules, and for the terminal  matrix. After simulating matrices of 

d d I d" /Ii the first two types, the symbols i, i, i ,  di can return to membrane  3, can 
release the "triggers" c from membrane  4, and hence the process can be con- 
tinued by simulating another matrix. However, after simulating the terminal 
matrix, the "controllers" are left in the environment, and the computat ion will 
stop - providing tha t  no nonterminal is present in the system, otherwise the 
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"checker" f ,  just introduced when simulating the matrix mn+l,  will bring a 
symbol A E N2 to membrane 2, and in this way the trap-symbol t2 is released, 
by the rule (At2, out) E R2. 

Another important  general observation is that  the simulation of matrices 
mi, 1 < i < n, should be complete, in the sense that  both their rules should 
be simulated, otherwise the trap-symbols are introduced; this is ensured by the 
rules which exchange symbols di, d~, d~ I, d~" with re, which are present in R1 for all 
i < i < n - except that  for k + 1 < i < n we do not have the rule (d~, out; te, in) 
in R1, because d~ has the task to check the presence of a specific symbol in the 
skin region, as we will immediately see. 

In any moment, any copy of a is sent to the output  membrane (hence 
from now on we will ignore this symbol). 

If Ill Consider now a configuration where the symbols di, d~, d i ,  d i , for some 
1 < i < k such that  mi : ( X  --* Y, A -~ ~/3), have arrived in the skin membrane. 
B y  using the rules ( di X ,  out), ( d~ A, out), ( d~' d~", out) and then ( di Y, in), ( d~, in), 
( di o~, m) ,  '" ii �9 (d i 13, in) from R1, we correctly simulate the matrix mi (note that each 
of a,/3 can be empty).  If, say, only the rule (diX,  out) is used, but  d~ returns 
to membrane 2 together with d~" (by means of the rule (d~d~", in) C R2), then 
d~ I will have to use the rule (d~ I, out; t~, in) E R1, and the trap-symbol te gets 
in. The same result is obtained when we simulate only the second rule of the 
matrix mi.  

I!  I t !  After simulating the matrix mi,  the symbols di, d~, di ,  d i can simulate 
again the same matr ix (if X = Y), and this is correct with respect to G, or they 
can return to membrane 3, and from here to membrane 4, releasing the four 
copies of the symbol c, which have waited in membrane 4 during the simulation. 

II I,I When we start  by a four-tuple di,d~,d~ ,d  i with k + 1 < i < n, hence 
corresponding to a matrix mi : ( X  ~ II, A --~ #) ,  then again di exits the system 
(by the rule (diX,  out) E R1), but, if any copy of A is present in membrane 
1, then the symbol d~ has to use the rule (d~A, in) E R2; in this way, A gets 
into membrane 2 and will immediately exit together with the trap-symbol t2. If 
no copy of A is present in the skin membrane, then dli waits. In the next step, 

II Ill II It/ d~ , d i will return from the environment, hence all four symbols di, d~, d i , d i can 
return to membrane 4 (they can simulate again the matrix mi only if X = Y, 
but this changes nothing). 

After simulating a matrix mi with 1 < i < n, we return to a configuration 
as that  we have started with, with the auxiliary symbols "stored" in the central 
membranes and all symbols from N1 U N2 in the skin membrane, hence the 
process can be iterated. 

When simulating the terminal matrix mn+l : (Z --* A, B --* A), the four 
I II Ill symbols dn+l, dn+l, dn+l, dn+l are brought to the skin membrane as above, dn+l 

! and d,~+l check whether or not Z and B are present (otherwise the trap-symbol t~ 
is introduced), d~+ 1 is exchanged for f (by means of the rule " (dn+l, out, f ,  in) E 
R1), and d~_ 1 just exits the system. If any symbol from N2 is still present in 
the skin membrane, then it will go together with f to membrane 2, and will 
return together with t2; if no symbol from N2 is present, that  is, the derivation 
in G is terminal, then f remains unused, and the computation stops (none of 
the symbols ~ . m dn+l, d,~+l, dn+l, dn+l is brought back from the environment, hence 



302 A. P~,un and G. Phun 

there is no way to release again the "trigger" c from membrane 4). 
Having in mind the explanations from the beginning of this discussion 

about the work of the system H, the reader can easily check other possible 
branches of the computations in H, always finding that the only way to get a 
halting computation is to correctly simulate derivations in G. Consequently, 
N(1-I) = {m I am e L(G)}, and this concludes the proof. �9 

w More Complex Rules 
In the previous section we have tried to be "realistic," using rules of the 

forms encountered in biology, with at most two chemicals collaborating in their 
passage through membranes. From a mathematical point of view it is natural 
to consider rules of a general form, (u, out; v, in), with u and v strings of an 
arbitrary length. The pair of numbers (lul, Ivl) is called the radius of the rule. In 
the previous section we have used only rules of the radius (1, 0), (2, 0), (0, 1), (0, 
2), (1, 1). As it is expected, when using rules of a larger radius, characterizations 
of N R E  can be obtained by P systems with a number of membranes smaller 
than in Theorem 3.1. Actually, two membranes suffice, and the price for this 
decrease in the number of membranes is not too big: rules of radius at most 
(componentwise) (2, 2) suffice. 

Let us denote by NPPm(r, s) the family of sets of natural numbers com- 
puted by P systems with at most m > 1 membranes, using rules of radius 
componentwise at most (r, s). When one of m, r, s is not bounded, we replace it 
with *. 

With the present terminology, P systems with carriers can be considered 
as systems with symport and antiport communication, and the main result from 
Reference 3) says that  rules of radius at most (3, 3) suffice. The following result 
is stronger from this point of view. 

Theorem 4.1 
NPPm(r, s) = N R E  for all m ~ 2 and (r, s) componentwise larger than or equal 
to (2, 2). 

Proof 
Again, we only have to prove the inclusion N R E  C_ NPP2(2, 2). Let G = 
(N, {a}, S, M, F)  be a matrix grammar with appearance checking in the binary 
normal form, and containing a unique terminal matrix, (Z --~ A, B --* A). With 
the same notations as in the proof of Theorem 3.1, we construct the P system 
H = (V, [112 ]211,M1,M2, M~,R1,R2,2), with 

y ~ _  

M~= 
M~= 
R1 = 

U 

N1 U N2 U {a ,c , f ,g ,h , t }  U {ci,c~,di I 1 < i < n +  1}, 
cXoAo, M2 = A, 
N1 U N2 U { a , f , g , h , t }  U {ci, c~,d~ I 1 < i < n}, 
{(cX, out; ciY', in), (ciA, out; cc~, in), (c~, out; u, in), (ci, out; t, in) [ 
ms : (X --* Y,A ~ u ) , l  < i < k} 
{(C, OUt; t, in), (cZ, out; CnTlf  , in), (cn+lA, out), (c~+1, out; t, in)} 
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U {(cX, out; cidi, in), (di, out; Yh, in), (ciA, out; t, in), 
(h, out; cg, in), (cig, out) I mi : (X ~ Y, A ~ #),  k + 1 < i < n} 

U {( fD,  out;t, in) lD e N2}, 
R2 : {(a, in), (t, in), (t, out)}. 

The symbols c, ci, c~ control the simulation of matrices mi, 1 < i < k, in 
the following way. After using the rule (cX, out;ciY, in) E R1, we have ci in 
the system. If the rule (ciA, out; c~c, in) C R1 cannot be used, then the symbol 
ci will bring the trap-symbol t into the system, and this symbol will go forever 
back and forth through membrane 2, hence the computation will never finish. 
If the rule (c~A, out; c~c, in) E R1 is used, then at the next step c~ will exit, 
bringing into the system the string u, which completes the simulation of the 
matrix mi : (X --~ Y, A --* u). 

In the case of the terminal matrix, we bring the symbols cn+l, f in the 
system, c,~+1 simulates the second rule of the matrix, and f checks whether or not 
the derivation was a terminal one. In the negative case, the rules ( fD,  out; t, in) E 
R1, for D E N2, will bring the trap-symbol in the system. 

If we start  with a rule of the form (cX, out; cidi, in) E R1, for some mi : 
(X --~ Y, A --* # ) , k  + 1 < i < n, then at the next step we have to use the rule 
(di,out;Yh, in) E R1. If in the skin membrane there is any copy of A, then 
the rule (ciA, out; t, in) has to be used, and the computation will never finish, 
because of the rules (t, in), (t, out) from R2. If no copy of A is present, then ci 
waits in the skin membrane. At the next step, h exits and brings cg inside. Now, 
together with g, the symbol ci can leave the system. In this way, the application 
of matrix mi was simulated. 

In all cases the symbol c is again available, hence the process can be 
iterated. Consequently, N(H) -- {m I am C L(G)}. (It is worth noting that  the 
main part  of the work of our system is done by the interaction between the skin 
membrane and the environment, membrane 2 is used only for storing the result 
of the computation and in order to prevent the "wrong" computations, by using 
forever the trap-symbol after introducing it into the system.) �9 

As it is also the case for Theorem 3.1, we do not know whether this result 
is optimal (this time, we have to consider not only the number of membranes, 
but also the radius of the rules), but  systems of simpler forms seem not to be 
too powerful. The  easy proof of the next result is left to the reader. 

Theorem 4.2 
Families NPPI(*,  1) ,NPP.( . ,O),NPP.(O, *) contain only finite sets of num- 
bers, but families NPPI(1, 2) and NPP2(1, 1) contain infinite sets of numbers. 

w Final Remarks  
Starting from the biological observation that  the membrane transport  is 

often performed by pairs of chemicals which help each other in this process (called 
in biology symport  or antiport), we have considered a purely communicative 
variant of P systems, where no object is changed during the computation, but 
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only the places of objects are changed. This means that the conservation law 
is observed in this framework (which is not necessarily the case for most of the 
previously considered classes of P systems). Surprisingly enough, this kind of 
"osmotic computation" proves to be universal, all Turing computable sets of 
numbers can be computed in this way. Moreover, this is done by a class of P 
systems with the rules strictly corresponding to the case from biology, where at 
most two chemical compounds are collaborating in passing through membranes. 

Five membranes were used in our proof; the number of membranes can 
be decreased to two if more complex (antiport) rules are allowed, that  is, with 
more than two objects collaborating in their passage through membranes. This 
indicates an expected trade-off between the number of membranes and the com- 
plexity (the radius) of symport /ant ipor t  rules - this trade-off deserves to be 
further investigated. 

From a mathematical  point of view, it also remains to be investigated the 
case when only symport  rules are used, that  is, only rules (u, in), (u, out), for u 
consisting of at most two symbols. Because we feel that such rules are not very 
powerful, a possible way to increase their power is to apply them conditionally, 
under the control of permitting or forbidding symbols. Specifically, a rule (u, in)b, 
or (u, out)b associated with a region i can be used only if b is present in this 
membrane. This is somewhat similar to the case of antiport rules, as b supports 
the exit of u, but  not leaving the region at the same time with u. Similarly, we 
can consider forbidding symbols, in the presence of which a rule cannot be used. 
This corresponds to the promoters and inhibitors known from biology, hence it is 
again a "realistic" variant. How powerful it is, it remains to be investigated. We 
expect that  the family of sets of numbers computed by P systems which use only 
symport rules applied in a conditional manner is significantly large. For instance, 
using only permitting conditions we can already compute non-semilinear sets of 
numbers. We will return to this topic in a forthcoming paper. 
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