An Expedient Protocol for Cyclopentenone Annulation

Mukund G. Kulkarni,* Saryu I. Davawala, Aniruddha K. Doke, Dhananjay S. Pendharkar

Department of Chemistry, University of Pune, Ganeshkhind, Pune – 411 007, India Fax +91(20)25691728; E-mail: mgkulkarni@chem.unipune.ernet.in *Received 20 January 2004; revised 13 April 2004*

This publication is dedicated to Prof. Hsing-Jang Liu on the occasion of his 60th birthday.

Abstract: A convenient and general protocol for the cyclopentenone annulation process is described.

Key words: cyclopentenone annulation, Wittig olefination, Claisen rearrangement, Wacker oxidation, polyquinanes

The cyclopentenone annulation process has considerable synthetic value, as one or more cyclopentane rings are part of several natural products^{1–8} like the polyquinanes. The importance of this is evident by the numerous cyclopentenone annulation methodologies currently available.^{9–20} In spite of this, construction of a sterically crowded cyclopentane ring is still a challenging task and inspires the development of novel approaches toward this end. In the context of our interests in the synthesis of cyclopentanoid natural products, namely (\pm) - α -cuparenone¹⁹ and (\pm) -lau-

rene,¹⁹ we have developed a convenient and efficient protocol for the construction of 4-substituted and 4,4disubstituted-2-cyclopentenones. This consists of four steps: Wittig olefination to an allyl vinyl ether;²⁰ Claisen rearrangement;^{21–23} Wacker oxidation;²⁴ and finally, intramolecular aldol condensation.

Wittig olefination of aldehydes and ketones with allyloxymethylenetriphenylphosphonium chloride under reported reaction conditions²⁰ afforded the corresponding allyl vinyl ethers, in most cases, as an inseparable mixture of *E* and *Z* isomers²⁵ (Table 1). Heating these allyl vinyl ethers in refluxing xylene effected the Claisen rearrangement and gave substituted 4-pentenals in near quantitative yields. Under standard Wacker oxidation conditions, these 4-pentenals were converted smoothly to the corresponding ketoaldehydes in good yields. The aldehyde group remained unaffected under the Wacker conditions.

Table 1

	R^1 R^2 i			$ \begin{array}{c} R^{1} \\ \overline{} \\ \phantom{$			
	1a-h		2a-h	3a-h	4a-h	5a-g, j	
	R ¹	R ²					
a	Ph	CH ₃	83%	96%	83%	89%	
b	[4-(Me)C ₆ H ₄]	CH ₃	81%	93%	84%	90%	
c	[3,4-di-(OMe)- C ₆ H ₃]CH ₂ CH ₂	CH ₃	81%	97%	83%	86%	
d	[4-(OMe)C ₆ H ₄]CH ₂ CH ₂	CH ₃	85%	94%	76%	88%	
e	CH ₃ CH ₂ CH ₂	$\rm CH_3\rm CH_2\rm CH_2$	78% ³¹	89%	71%	83%	
f	CH ₃ CH ₂ CH ₂	$CH_3(CH_2)_3$	77% ³¹	88%	73%	81%	
g	CH ₃ CH ₂	CH ₃	74% ³¹	84%	72%	82%	
h	[3,4-di-(OMe)C ₆ H ₃]	Н	86%	95%	76%	$87\%^{26}$	

Reagents and Conditions:

i) CH₂CHCH₂OCH₂Ph₃P⁺Cl⁻, THF, *t*-BuO⁻K⁺/*t*-BuOH, 0 °C. ii) Xylene, reflux, 4–5 h. iii) PdCl₂/CuCl₂ (10 mol% each), O₂, H₂O–DME (1:9), r.t., 2–3 h. iv) 5% aq. methanolic KOH, r.t., 2 h.

SYNTHESIS 2004, No. 17, pp 2919–2926 Advanced online publication: 02.09.2004 DOI: 10.1055/s-2004-831208; Art ID: Z01204SS © Georg Thieme Verlag Stuttgart · New York

Varian Mercury 300 instrument. Elemental analyses were obtained

To a suspension of aldehyde or ketone 1a-h (5 mmol) and allyloxymethylenetriphenylphosphonium chloride (1.2 equiv) in dry THF at 0 °C was dropwise added a solution of KOt-Bu (1.2

equiv) in dry t-BuOH. After one hour, the normal aqueous extrac-

tive work up gave crude allyl vinyl ethers. Passing these crude prod-

ucts through a short silica gel column afforded the allyl vinyl ethers

2a-h in 74-86% yield and in sufficiently pure form for the next re-

on a HOSLI semi-automatic C, H analyzer.

General Procedures³²

action.

Intramolecular aldol condensation of the ketoaldehydes with 5% methanolic KOH afforded 2-cyclopentenones in excellent yields. The whole sequence is short enough to be executed in a single long working day.

All solvents were distilled and dried before use. 'Acme' silica gel (100-200 mesh) was used for column chromatography, and a hexane-EtOAc solvent system was used for elution. The mp and bp values are uncorrected and were obtained using a paraffin oil bath. The FT-IR spectra were recorded on a Perkin-Elmer 1600 series instrument. ¹H and ¹³C NMR spectra were recorded on JEOL FX 90Q/

Biographical Sketches

Mukund G. Kulkarni was born in India in 1953. He received his B.Sc. in 1973 and M.Sc. in 1975 from the University of Pune, and his doctoral degree in organic chemistry from the Univer-

sity of Alberta in 1985. He returned to India and was a lecturer at the University of Pune from January 1989 to December 1996 and is currently a reader at the same place. His research interests include total synthesis of natural products, newer synthetic methods, asymmetric synthesis, chemistry of carbohydrates and radical cymethods clisation in synthesis.

Saryu I. Davawala was born in India in 1969. She received her B.Sc. in 1990 and M.Sc. in 1992 from the University of Pune and completed her Ph. D. from the Department of Chemistry, University of Pune, in May 1999 under the guid-

ance of Dr. M. G. Kulkarni. She worked as a postdoctoral fellow in Dr. Reddy's Research Foundation, Hyderabad from May to August, 2000. She worked as an Executive R&D in SPARC, Baroda from January to April, 2001. She was

He is currently pursuing

appointed as a lecturer in the Department of Chemistry, University of Pune from September 2001 to August 2002 and from November 2002 to July 2003. She is currently a Young Scientist, DST, in the same department.

his doctoral degree under the guidance of Dr. M. G. Kulkarni.

Aniruddha K. Doke was born in India in 1976. He received his B.Sc. in 1996 and M.Sc. in 1998 from the University of Pune. He served as a research associate in Colgate-Palmolive (India) Ltd, Mumbai, India from June to December of 1998.

Dhananjay S. Pendharkar was born in India in 1969. He completed his B.Sc. in 1990 from Shivaji University, Kolhapur, and his M.Sc. in 1992 from the University of Pune and Ph.D. from the

Department of Chemistry, University of Pune, in 1998 under the guidance of Dr. M. G. Kulkarni. He pursued postdoctoral research at the University of Kentucky from 1998 to 2000. He then joined Wockhardt, India, Aurangabad and is currently working in Aurigene Discovery Tech. Ltd., Bangalore.

A solution of the allyl vinyl ethers **2a–h** was heated in refluxing xylene for 4–5 h. Removal of xylene under reduced pressure gave 4pentenals **3a–h** in 84–97% yield and in fairly pure form.

The 4-pentenals **3a–h**, $PdCl_2$ (10 mol%), and $CuCl_2$ (10 mol%) were dissolved in aqueous DME (1:9) and stirred under an oxygen atmosphere for 2–3 h. When the reaction was observed to be complete, normal aqueous extractive work-up gave the ketoaldehydes **4a–h** in 71–84% yield.

Table 2

The crude ketoaldehydes 4a-4h were dissolved in 5% aq. methanolic KOH and stirred at r.t. until the reaction was complete. Removal of methanol under reduced pressure and purification of the product on a silica gel column gave 2-cyclopentenones 5a-g,j in 81-90% yield.

Compound	Bp/Mp [°C] (Torr)	IR [cm ⁻¹] (neat/nujol)	¹ H NMR (CDCl ₃) δJ (Hz)	¹³ C NMR (CDCl ₃) δ	Microanalysis calcd/found C	Н
2a viscous liquid	-	1645.0, 1513.4, 1434.1, 1378.7, 814.6.	1.84, 1.96 (2 × s, 3 H, <i>E</i> , <i>Z</i> -C=C-CH ₃), 4.30 (m, 2 H, -O-C <i>H</i> ₂ CH=), 5.32 (m, 2 H, -C=CH ₂), 5.91 (m, 1 H, -C=CH-), 6.20, 6.48 (2 × s, 1 H, <i>E</i> , <i>Z</i> O-CH=C), 7.31 (s, 5 H, Ar- H)	16.6, 21.4 (-C=C-CH ₃), 74.6 (-O-CH ₂ CH), 109.4 (Ar- C=CH-), 117.9 (-CH=CH ₂), 127.7 (C _{arom} para), 128.1 (C _{arom} meta), 129.4 (C _{arom} ortho), 133.8 (CH ₂ -C=CH ₂), 135.8 (C _{arom} 1), 138.7 (O-CH=C)	82.72 82.92	8.10 8.28
2b viscous liquid	_	1654.1, 1512.8, 1434.1, 1378.6, 812.8.	2.04, 2.12 (2×s, 3 H, <i>E</i> , <i>Z</i> C=C-CH ₃), 2.44 (s, 3 H, Ar-CH ₃), 4.64 (m, 2 H, -OCH ₂ -), 5.62 (m, 2 H, C=CH ₂), 6.24 (m, 1 H, -C=CH-), 6.48, 6.84 (2×s, 1 H, <i>E</i> , <i>Z</i> -O-CH=C), 7.66 (m, 4 H, Ar-H)	16.5, 21.3 (-C=C-CH ₃), 21.4 (Ar-CH ₃), 74.7 (-O-CH ₂ CH=), 109.5 (Ar-C=CH), 118.1 (-CH=CH ₂ -), 128.3 (C _{arom} me- ta), 129.6 (C _{arom} ortho), 133.7 (-CH ₂ -C=CH ₂), 135.9 (C _{arom} 1), 137.3 (C _{arom} para), 138.8 (-O- CH=C-)	82.93 83.11	8.57 8.62
2c viscous liquid	_	1682.0, 1603.0, 1522.0, 1461.0, 820.0	1.57, 1.68 (2 × s, 3 H, <i>E</i> , <i>Z</i> C=C-CH ₃), 2.15, 2.39 (t, 2 H, C=C-CH ₂ -, <i>J</i> = 7.7 Hz), 2.64 (m, 2 H, Ar-CH ₂ -), 3.84 (s, 3 H, -OCH ₃), 3.86 (s, 3 H, -OCH ₃), 4.12–4.17 (m, 2 H, -OCH ₂), 5.16–5.27 (m, 2 H, -C=CH ₂ -), 5.81–5.89 (m, 1 H, CH ₂ =C <i>H</i> -), 6.70, 6.79 (2 × s, 1 H, <i>E</i> , <i>Z</i> -CH=C), 6.75–6.87 (m, 3 H, Ar-H)	16.8, 21.2 (=C-CH ₃), 32.8 (Ar- CH ₂ -CH ₂ -), 33.8 (Ar-CH ₂ -), 55.8, 55.9 (2 × -O-CH ₃), 74.8 (-O-CH ₂ -CH=), 108.9 (CH ₃ C=C-O-), 113.1 (C _{arom} 5 <i>meta</i>), 114.5 (C _{arom} 2 <i>ortho</i>), 118.1 (-CH=CH ₂), 121.5 (C _{arom} 6 <i>ortho</i>), 131.6 (C _{arom} 1), 133.3 (-CH ₂ -C=CH ₂), 137.9 (-O-CH=C), 144.1 (C _{arom} 4 <i>para</i>), 147.8 (C _{arom} 3 <i>meta</i>)	73.25 73.40	8.45 8.61
2d viscous liquid	-	1675.0, 1621.0, 1520.0, 1445.0, 835.0.	1.55, 1.68 (2 × s, 3 H, <i>E</i> , <i>Z</i> -C=C-CH ₃), 2.14, 2.38 (2 × t, 2 H, <i>J</i> = 8.0 Hz, -C=C-CH ₂ -), 2.65 (m, 2 H, Ar-CH ₂ -), 3.78 (s, 3 H, -OCH ₃), 4.12–4.18 (m, 2 H, -OCH ₂), 5.19–5.28 (m, 2 H, -CH=CH ₂ -), 5.78–5.92 (m, 1 H, -CH=CH ₂), 6.81, 6.83 (2 × s, 1 H, <i>E</i> , <i>Z</i> -O-CH=C), 7.07–7.15 (m, 4 H, Ar-H)	16.4, 21.0 (=C- <i>C</i> H ₃), 32.6 (Ar-CH ₂ - <i>C</i> H ₂ -), 33.5 (Ar-CH ₂ -), 55.8 (-O- <i>C</i> H ₃), 74.5 (-O- <i>C</i> H ₂ -CH=), 109.5 (CH ₃ <i>C</i> =C-O-), 114.1 (C _{arom} <i>meta</i>), 117.9 (-CH= <i>C</i> H ₂), 128.2 (C _{arom} <i>ortho</i>), 131.9 (C _{arom} 1), 133.1 (CH ₂ - <i>C</i> =CH ₂), 138.2 (-O- <i>C</i> H=C), 148.7 (C _{arom} <i>para</i>)	77.55 77.66	8.68 8.49
2e liquid	167–169 (760)	2933.2, 1651.3, 1464.7, 1168.2	0.95 (m, 6 H, $2 \times$ -CH ₃), 1.29 (m, 4 H, $2 \times$ -CH ₂ -CH ₃), 1.87 (m, 4 H, $2 \times$ -CH ₂ -CH ₂ -CH ₃), 4.59 (m, 2 H, -O-CH ₂ -), 5.26 (m, 2 H, -CH=CH ₂), 5.96 (m, 1 H, -CH ₂ -CH=CH ₂), 6.4 (s, 1 H, -O-CH=C-)	13.7 (CH ₃ CH ₂ -), 22.4 (CH ₃ CH ₂ -), 30.5, 34.1 (CH ₃ CH ₂ CH ₂ -), 74.2 (-OCH ₂ -), 114.2 (-C=CH-O-), 118.3 (-CH ₂ CH=CH ₂), 132.8 (-CH ₂ CH=CH ₂), 139.7 (-O- CH=C-)	78.51 78.42	11.98 11.79

Table 2 (conti	Table 2 (continued)							
Compound	Bp/Mp [°C] (Torr)	IR [cm ⁻¹] (neat/nujol)	¹ H NMR (CDCl ₃) δJ (Hz)	¹³ C NMR (CDCl ₃) δ	Microanalysis calcd/found C	Н		
2f liquid	181–182 (760)	2920.5, 1653.2, 1462.5, 1157.9	$\begin{array}{l} 0.94-1.0 \ (\mathrm{m, 6 \ H, 2 \times -CH_3}), \\ 1.25-1.40 \ (\mathrm{m, 6 \ H, -CH_2CH_3}, \\ -\mathrm{CH_2CH_2CH_2CH_3}), 1.86-1.93 \\ (\mathrm{m, 4 \ H, 2 \times -CH_2-C-}), 4.58 \ (\mathrm{m, 2 \ H, -O-CH_2-}), 5.21-5.40 \ (\mathrm{m, 2 \ H, -CH=CH_2}), 5.96 \ (\mathrm{m, 1 \ H, -CH_2CH=CH_2}), 6.41, 6.48 \ (2 \times \mathrm{s, 1 \ H, \textit{E,Z -O-CH=C-})} \end{array}$	$\begin{array}{c} 13.9 \ (CH_3CH_2-), \ 17.8 \\ (CH_3CH_2-), \ 20.7, \ 22.5 \ (2 \times \\ -CH_2CH_3), \ 29.2, \ 29.8 \ (2 \times \\ -CH_2CH_2CH_3), \ 31.8 \\ (-CH_2C=CH), \ 73.8 \ (-O-CH_2-), \\ 112.2 \ (-C=CH-O-), \ 117.2 \\ (-CH_2CH=CH_2), \ 133.1 \\ (-CH_2CH=CH_2), \ 138.6 \ (-O-CH=C-) \end{array}$	79.06 78.92	12.16 12.27		
2g liquid	142–144 (760)	2925.8, 1658.7, 1454.2, 1164.9	$\begin{array}{l} 0.92 \ (\text{m}, 3 \ \text{H}, -\text{CH}_2\text{C}H_3), \ 1.41 \\ (\text{s}, 3 \ \text{H}, -\text{C}-\text{C}\text{H}_3), \ 1.93 \ (\text{m}, 2 \ \text{H}, \\ -\text{C}H_2\text{C}\text{H}_3), \ 4.51 \ (\text{m}, 2 \ \text{H}, -\text{O}- \\ \text{C}\text{H}_2\text{-}), \ 5.21-5.36 \ (\text{m}, 2 \ \text{H}, \\ -\text{C}\text{H}=\text{C}\text{H}_2), \ 5.94 \ (\text{m}, 1 \ \text{H}, \\ -\text{C}\text{H}_2\text{C}\text{H}=\text{C}\text{H}_2), \ 6.42, \ 6.48 \ (2 \times \\ \text{s}, 1 \ \text{H}, \ \textit{E}, \textit{Z} \ -\text{O}-\text{C}\text{H}=\text{C}-) \end{array}$	14.1 (<i>C</i> H ₃ CH ₂ -), 17.7, 21.6 (<i>E</i> , <i>Z C</i> H ₃ -C-), 28.4 (CH ₃ <i>C</i> H ₂ -), 73.9 (-O- <i>C</i> H ₂ -), 108.9 (- <i>C</i> =CH- O-), 118.1 (-CH ₂ CH= <i>C</i> H ₂), 134.1 (-CH ₂ <i>C</i> H=CH ₂), 138.3 (-O- <i>C</i> H=C-)	76.14 75.92	11.18 11.31		
2h viscous liquid	-	1681.2, 1653.6, 1601.7, 1515.6, 859.0	4.20 (s, 6 H, 2 × -OCH ₃), 4.66 (m, 2 H, -O-CH ₂ C=), 5.68 (m, 2 H, -CH=CH ₂ -), 6.42 (m, 1 H, -CH ₂ CH=CH ₂), 6.60 (d, 1 H, J = 8.0 Hz, -O-CH=CH-), 7.44 (m, 3 H, Ar-H), 7.82 (d, 1 H, J = 10.2 Hz, OCH=CH-)	55.8, 56.1 (2 × O-CH ₃), 73.9 (-O-CH ₂ -), 99.5 (Ar- <i>C</i> =C-), 110.7 (C _{arom} 2 <i>ortho</i>), 113.3 (C _{arom} 5 <i>meta</i>), 117.2 (-CH=CH ₂), 119.6 (C _{arom} 6 <i>ortho</i>), 128.7 (C _{arom} 1), 134.7 (- <i>C</i> =CH ₂), 143.2 (-O- <i>C</i> H=C), 146.1 (C _{arom} 4 <i>para</i>), 148.3 (C _{arom} 3 <i>meta</i>)	70.90 71.01	7.32 7.54		
3a liquid	82 (3)	2729.1, 1720.9, 1651.3, 1446.5, 922.0	1.32 (s, 3 H, -C-CH ₃), 2.58 (d, 2 H, <i>J</i> = 7.7 Hz, -C=CHCH ₂ -), 5.24 (m, 2 H, -C=CH ₂), 5.44 (m, 1 H, -C=CH-), 7.28 (s, 5 H, Ar-H), 9.60 (s, 1 H, -CHO)	21.4 (C-CH ₃), 39.5 (-CH ₂ CH=CH ₂), 55.9 (Ar-C- CHO), 118.6 (-CH=CH ₂), 124.7 (C _{arom} ortho), 126.3 (C _{arom} para), 128.7 (C _{arom} meta), 135.3 (-CH=CH ₂), 137.6 (C _{arom} 1), 201.1 (-CHO)	82.72 82.63	8.10 7.96		
3b liquid	91 (1.6)	2721.0, 1724.0, 1645.0, 920.0	1.51 (s, 3 H, -C-CH ₃), 2.53 (s, 3 H, Ar-CH ₃), 2.78 (d, 2 H, J = 7.5 Hz, =CHCH ₂ -), 5.22 (m, 2 H, -CH=CH ₂), 5.64 (m, 1 H, -CH=CH ₂), 7.44 (s, 4 H, Ar- H), 9.93 (s, 1 H, -CHO)	20.9 (Ar-CH ₃), 21.3 (-C- <i>C</i> H ₃), 39.6 (- <i>C</i> H ₂ -CH=CH ₂), 55.8 (Ar- <i>C</i> -CHO), 118.7 (-CH= <i>C</i> H ₂), 124.6 (C _{arom} ortho), 129.7 (C _{arom} meta), 135.2 (-CH=CH ₂), 135.6 (C _{arom} para), 136.2 (C _{arom} 1), 201.2 (-CHO)	82.93 83.09	8.57 8.79		
3c liquid	128 (1)	2690.0, 1710.0, 1631.0, 1580.0, 1507.0, 919.0	1.10 (s, 3 H, -C-CH ₃), 1.81 (m, 2 H, -C-CH ₂ -C), 2.29 (m, 2 H, -C=C-CH ₂ -), 2.45 (m, 2 H, Ar- CH ₂ -), 3.82 (s, 3 H, -OCH ₃), 3.85 (s, 3 H, -OCH ₃), 5.01–5.16 (m, 2 H, -C=CH ₂), 5.71 (m, 1 H, -CH=CH ₂ -), 6.60–6.80 (m, 3 H, Ar-H), 9.48 (s, 1 H, -CHO)	20.8 (-C-CH ₃), 30.2 (Ar-CH ₂ -), 34.8 (Ar-CH ₂ -CH ₂), 38.1 (-CH ₂ -CH=), 51.2 (-C-CHO), 55.7, 55.8 ($2 \times$ -OCH ₃), 113.2 (C _{arom} 5 <i>meta</i>), 114.4 (C _{arom} 2 <i>ortho</i>), 118.3 (-CH=CH ₂), 120.9 (C _{arom} 6 <i>ortho</i>), 133.6 (C _{arom} 1), 138.6 (-CH=CH ₂), 144.9 (C _{arom} 4 <i>para</i>), 147.7 (C _{arom} 3 <i>meta</i>), 202.5 (-CHO)	73.25 73.45	8.45 8.59		
3d liquid	148 (2)	2705.8, 1724.8, 1639.3, 1583.5, 1512.8, 912.6	1.11 (s, 3 H, -C-CH ₃), 1.76 (m, 2 H, -C-CH ₂ -C-), 2.30 (t, 2 H, J = 8.1 Hz, -C=CHCH ₂ -), 2.61 (m, 2 H, Ar-CH ₂ -), 3.78 (s, 3 H, -OCH ₃), 5.13 (m, 2 H, -C=CH ₂), 5.84 (m, 1 H, -CH=CH ₂ -), 6.82 (d, 2 H, J = 8.2 Hz, Ar-H), 7.10 (m, 2 H, Ar-H), 9.50 (s, 1 H, -CHO)	20.7 (-C- <i>C</i> H ₃), 30.3 (Ar- <i>C</i> H ₂ -), 35.1 (Ar- <i>C</i> H ₂ <i>C</i> H ₂), 38.2 (- <i>C</i> H ₂ <i>C</i> H=), 51.3 (- <i>C</i> - <i>C</i> HO), 55.8 (-O- <i>C</i> H ₃), 114.1 (<i>C</i> _{arom} <i>meta</i>), 118.4 (- <i>C</i> H= <i>C</i> H ₂), 128.4 (<i>C</i> _{arom} <i>ortho</i>), 132.1 (<i>C</i> _{arom} <i>1</i>), 138.3 (- <i>C</i> H= <i>C</i> H ₂), 149.7 (<i>C</i> _{arom} <i>para</i>), 202.6 (-CHO)	77.55 77.46	8.68 8.84		

Synthesis 2004, No. 17, 2919–2926 © Thieme Stuttgart · New York

Table 2 (con	Fable 2 (continued)							
Compound	Bp/Mp [°C] (Torr)	IR [cm ⁻¹] (neat/nujol)	¹ H NMR (CDCl ₃) δJ (Hz)	¹³ C NMR (CDCl ₃) δ	Microanalysis calcd/found C	Н		
3e liquid	187–188 (760)	2730.3, 1718.5, 1533.4, 1428.2	$\begin{array}{c} 0.9{-}1.02 \ (\mathrm{m, 6 \ H, 2 \times CH_3}), \\ 1.3{-}1.42 \ (\mathrm{m, 4 \ H, 2 \times CH_3}{-}\\ CH_2{-}), 1.46{-}1.55 \ (\mathrm{m, 4 \ H, }\\ CH_3CH_2CH_2{-}), 2.33 \ (\mathrm{m, 2 \ H, }\\ -CH_2CH{=}CH_2), 5.02{-}5.16 \ (\mathrm{m, }\\ 2 \ \mathrm{H, \ -CH{=}CH_2)}, 5.72 \ (\mathrm{m, 1 \ H, }\\ -CH{=}CH_2), 9.53 \ (\mathrm{s, 1 \ H, \ -CHO)} \end{array}$	13.8 (-CH ₃), 18.7 (-CH ₂ CH ₃), 33.8 (-CH ₂ CH ₂ CH ₂), 37.4 (-CH ₂ CH=), 49.1 (-C-CHO), 117.4 (-CH=CH ₂), 138.2 (-CH=CH ₂), 202.5 (-CHO)	78.51 78.37	11.98 12.07		
3f liquid	202–203 (760)	2726.1, 1720.2, 1548.7, 1433.3	$\begin{array}{l} 0.9{-}1.03 \ (\text{m, 6 H, 2} \times \text{CH}_3), \\ 1.17{-}1.43 \ (\text{m, 6 H, -}\text{CH}_2\text{CH}_3, \\ -\text{CH}_2\text{C}H_2\text{C}H_2\text{C}H_3), 1.49{-}1.58 \\ (\text{m, 4 H, 2} \times {-}\text{CH}_2\text{-}\text{C}{-}), 2.31 \ (\text{m, 2 H, -}\text{C}H_2\text{C}\text{H}{-}\text{C}\text{H}_2), 5.03{-}5.14 \\ (\text{m, 2 H, -}\text{C}H{=}\text{C}H_2), 5.73 \ (\text{m, 1 H, -}\text{C}H{=}\text{C}\text{H}_2), 9.57 \ (\text{s, 1 H, -}\text{C}\text{HO}) \end{array}$	13.6, 14.1 (-CH ₃), 18.9 (-CH ₂ CH ₃), 23.2, 26.4 (-CH ₂ CH ₂ CH ₃), 33.2, 33.7 (-CH ₂ -C-), 37.6 (-CH ₂ CH=CH ₂), 48.7 (-C- CHO), 117.9 (-CH=CH ₂), 138.7 (-CH=CH ₂), 202.3 (-CHO)	79.06 79.21	12.12 12.01		
3g liquid	179–181 (760)	2722.2, 1719.7, 1543.6, 1427.1	$\begin{array}{l} 0.90-0.97 \ (t, 3 \ H, J = 7.0 \ Hz, \\ -CH_2CH_3), \ 1.22 \ (s, 3 \ H, -C- \\ CH_3), \ 1.54 \ (q, 2 \ H, J = 7.0 \ Hz, \\ -CH_2CH_3), \ 2.27 \ (m, 2 \ H, \\ -CH_2CH=CH_2), \ 5.05-5.20 \ (m, \\ 2 \ H, -CH=CH_2), \ 5.74 \ (m, 1 \ H, \\ -CH=CH_2), \ 9.48 \ (s, 1 \ H, -CHO) \end{array}$	11.3 (<i>C</i> H ₃ CH ₂ -), 17.4 (<i>C</i> H ₃ C-), 22.2 (CH ₃ <i>C</i> H ₂ -), 37.3 (- <i>C</i> H ₂ CH=CH ₂), 48.4 (- <i>C</i> - CHO), 116.8 (-CH=CH ₂), 137.3 (- <i>C</i> H=CH ₂), 202.1 (-CHO)	76.14 76.31	11.18 11.05		
3h liquid	157 (2)	2719.3, 1722.0, 1681.2, 1590.5, 1517.5, 918.0.	2.79 (m, 2 H, -CH ₂ CH=C), 3.68 (m, 1 H, -CH-CHO), 4.02 (s, 6 H, $2 \times$ -OCH ₃), 5.3 (m, 2 H, -C=CH ₂), 6.00 (m, 1 H, CH ₂ =CH-), 6.96-7.88 (m, 3 H, Ar-H), 10.24 (d, 1 H, $J = 2.40$ Hz, -CHO)	32.8 (- $CH_2CH_{=}$), 55.7 (Ar- C - CHO), 55.9, 56.1 (2 × - OCH_3), 112.3 (C _{arom} 2ortho), 113.7 (C _{arom} 5meta), 119.6 (- $CH=CH_2$), 121.3 (C _{arom} 6ortho), 130.5 (C _{arom} 1), 136.7 (- $C=CH_2$), 147.1 (C _{arom} 4para), 147.8 (C _{arom} 3meta), 201.7 (-CHO)	70.89 70.71	7.32 7.49		
4a liquid	121 (2.5)	2689.2, 1718.8, 1711.3.	1.56 (s, 3 H, -C-CH ₃), 2.04 (s, 3 H, -COCH ₃), 3.10 (s, 2 H, -COCH ₂ -), 7.35 (s, 5 H, Ar-H), 9.66 (s, 1 H, -CHO)	21.8 (-C- <i>C</i> H ₃), 27.9 (<i>C</i> H ₃ - C=O), 48.9 (-CH ₂ -C=O), 53.3 (Ar- <i>C</i> -CHO), 125.8 (C _{arom} ortho), 126.9 (C _{arom} para), 128.6 (C _{arom} meta), 137.1 (C _{arom} 1), 201.3 (-CHO), 206.7 (CH ₃ - <i>C</i> =O)	75.76 75.94	7.42 7.38		
4b liquid	123 (2.5)	2681.0, 1722.0, 1707.0	1.62 (s, 3 H, -C-CH ₃), 2.11 (s, 3 H, -COCH ₃), 2.39 (s, 3 H, Ar- CH ₃), 3.16 (s, 2 H, -CH ₂ -CO), 7.42 (s, 4 H, Ar-H), 9.88 (s, 1 H, -CHO)	21.0 (Ar-CH ₃), 21.7 (-C- <i>C</i> H ₃), 27.8 (<i>C</i> H ₃ -C=O), 49.1 (- <i>C</i> H ₂ - C=O), 53.5 (Ar- <i>C</i> -CHO), 125.6 (C _{arom} ortho), 125.9 (C _{arom} meta), 133.5 (C _{arom} 1), 135.4 (C _{arom} para), 201.1 (-CHO), 206.6 (CH ₃ -C=O)	76.44 76.31	7.90 8.01		
4c liquid	136 (0.6)	2695.0, 1716.0, 1707.0.	1.19 (s, 3 H, -C-CH ₃), 1.83 (m, 2 H, -C-CH ₂ -), 2.12 (s, 3 H, -COCH ₃), 2.45 (t, 2 H, $J = 8.6$ Hz, Ar-CH ₂ -), 2.69 (d, 1 H, J = 17.8 Hz, -CO-CH ₂ -), 2.84 (d, 1 H, $J = 17.8$ Hz, -CO- CH ₂ -), 3.82 (s, 3 H, -OCH ₃), 3.84 (s, 3 H, -OCH ₃), 6.55–6.85 (m, 3 H, Ar-H), 9.58 (s, 1 H, -CHO)	$\begin{array}{l} 20.4({\rm C-CH_3}),26.1({\rm CH_3-C=O}),\\ 30.2({\rm Ar-CH_2-}),34.4({\rm Ar-CH_2CH_2}),46.2(-{\rm CH_2-C=O}),\\ 47.1(-{\rm C-CHO}),55.8,55.9\\ (2\times-{\rm OCH_3}),113.5\\ ({\rm C}_{\rm arom}5meta),114.3\\ ({\rm C}_{\rm arom}2ortho),120.8\\ ({\rm C}_{\rm arom}6ortho),133.8({\rm C}_{\rm arom}1),\\ 145.4({\rm C}_{\rm arom}4para),147.8\\ ({\rm C}_{\rm arom}3meta),204.5(-{\rm CHO}),\\ 206.4({\rm CH_3-C=O}) \end{array}$	69.04 69.15	7.97 7.99		

Compound	Bp/Mp [°C] (Torr)	IR [cm ⁻¹] (neat/nujol)	¹ H NMR (CDCl ₃) δJ (Hz)	¹³ C NMR (CDCl ₃) δ	Microanalysis calcd/found C	Н
4d solid	41-42	2712.1, 1718.1, 1705.6.	1.22 (s, 3 H, -C-CH ₃), 1.72– 1.85 (m, 2 H, -C-CH ₂ -C-), 2.12 (s, 3 H, -COCH ₃), 2.46 (t, 2 H, J = 8.5 Hz, Ar-CH ₂ -), 2.67 (d, 1 H, $J = 17.7$ Hz, -CO-CH ₂ -), 2.84 (d, 1 H, $J = 17.7$ Hz, -CO- CH ₂ -), 3.77 (s, 3 H, -OCH ₃), 6.81 (d, $J = 8.2$ Hz, 2 H, Ar-H), 7.05 (d, $J = 8.0$ Hz, 2 H, Ar-H), 9.58 (s, 1 H, -CHO)	20.5 (-C- <i>C</i> H ₃), 26.3 (<i>C</i> H ₃ - C=O), 30.1 (Ar-CH ₂ -), 34.3 (Ar-CH ₂ CH ₂), 46.3 (- <i>C</i> H ₂ - C=O), 47.2 (-C-CHO), 55.7 (-OCH ₃), 114.3 (C _{arom} meta), 128.5 (C _{arom} ortho), 132.3 (C _{arom} 1), 149.8 (C _{arom} para), 204.6 (-CHO) 206.7 (CH ₃ - <i>C</i> =O)	72.55 72.76	8.12 8.20
4e viscous liquid	_	2705.6, 1718.1, 1706.2	$\begin{array}{l} 0.91-1.02 \ (\mathrm{m, 6 \ H, 2 \times CH_3}), \\ 1.3-1.43 \ (\mathrm{m, 4 \ H, 2 \times CH_3}\text{-}\\ CH_2\text{-}), 1.5-1.6 \ (\mathrm{m, 4 \ H,}\\ 2 \times CH_3CH_2CH_2), 2.11 \ (\mathrm{s, 3 \ H,}\\ CH_3\text{-}C=O), 2.69 \ (\mathrm{d, 1 \ H,}\\ J=17.1 \ \mathrm{Hz}, O=C\text{-}CH_2), 2.81\\ (\mathrm{d, 1 \ H, }J=17.1 \ \mathrm{Hz}, O=\text{C-}\\ CH_2), 9.57 \ (\mathrm{s, 1 \ H, -CHO}) \end{array}$	13.8 (-CH ₂ CH ₃), 17.6 (-CH ₂ CH ₃), 26.2 (CH ₃ -C=O), 33.1 (-CH ₂ CH ₂ CH ₂ OH ₃), 44.8 (O=C-CH ₂), 47.6 (-C-CHO), 202.3 (-CHO), 205.1 (CH ₃ - <i>C</i> =O)	71.70 71.95	10.94 10.77
4f viscous liquid	_	2698.3, 1719.4, 1704.9	$\begin{array}{l} 0.9{-}1.05 \ (\mathrm{m, 6 \ H, 2 \times CH_3}), \\ 1.28{-}1.44 \ (\mathrm{m, 6 \ H,} \\ \mathrm{CH_3CH_2CH_2-C}, \\ \mathrm{CH_3CH_2CH_2CH_2-}), 1.52{-}1.63 \\ (\mathrm{m, 4 \ H, 2 \times -CH_2-C}), 2.13 \ (\mathrm{s}, \\ 3 \ \mathrm{H, CH_3-C=O}), 2.67 \ (\mathrm{d, 1 \ H}, \\ J = 17.3 \ \mathrm{Hz}, \mathrm{O=C-CH_2}), 2.79 \\ (\mathrm{d, 1 \ H}, J = 17.3 \ \mathrm{Hz}, \mathrm{O=C-CH_2}), 9.61 \ (\mathrm{s, 1 \ H, -CHO}) \end{array}$	13.9, 14.3 (CH ₃ CH ₂ -), 17.7 (CH ₃ CH ₂ CH ₂ -C-), 23.1 (CH ₃ CH ₂ CH ₂ CH ₂ -C), 26.2 (CH ₃ CH ₂ CH ₂ CH ₂ -), 26.4 (CH ₃ - C=O), 32.2 (CH ₃ CH ₂ CH ₂ CH ₂ - C), 33.4 (CH ₃ CH ₂ CH ₂ -C), 44.9 (O=C-CH ₂), 47.8 (-C-CHO), 202.1 (-CHO), 205.4 (CH ₃ - C=O)	72.68 72.83	11.18 11.33
4g viscous liquid	-	2701.2, 1717.3, 1705.8	0.90–0.97 (t, 3 H, $J = 7.1$ Hz, -CH ₂ CH ₃), 1.21 (s, 3 H, -C- CH ₃), 1.54 (q, 2 H, $J = 7.1$ Hz, -CH ₂ CH ₃), 2.11 (s, 3 H, CH ₃ - C=O), 2.71 (d, 1 H, $J = 17$ Hz, O=C-CH ₂), 2.83 (d, 1 H, $J = 17$ Hz, O=C-CH ₂), 9.48 (s, 1 H, -CHO)	10.2 (CH ₃ -CH ₂ -), 16.1 (CH ₃ - C-), 25.6 (CH ₃ CH ₂ -), 45.2 (O=C-CH ₂), 47.3 (-C-CHO), 202.4 (-CHO), 205.7 (CH ₃ - C=O)	67.57 67.39	9.92 9.84
4h solid	58–60	2685.0, 1721.0, 1698.0.	2.17 (s, 3 H, -CO-CH ₃), 2.62 (d, 1 H, $J = 11.3$ Hz, -CH ₂ -CO-), 3.31 (m, 1 H, -CH-CHO), 3.84 (s, 6 H, 2 × -OCH ₃), 4.15 (br s, 1 H, -CH ₂ -CO-), 6.64 (s, 1 H, Ar-H), 6.69 (d, $J = 8.1$ Hz, 1 H, Ar-H), 6.82 (d, $J = 6.0$ Hz, 1 H, Ar-H), 9.63 (s, 1 H, -CHO)	27.6 (CH ₃ -C=O), 43.6 (CH ₂ - C=O), 52.7 (Ar-C-CHO), 55.9, 56.2 ($2 \times$ -OCH ₃), 113.1 (C _{arom} 5 <i>meta</i>), 114.2 (C _{arom} 2 <i>ortho</i>), 121.7 (C _{arom} 6 <i>ortho</i>), 130.7 (C _{arom} 1), 147.3 (C _{arom} 4 <i>para</i>), 148.1 (C _{arom} 3 <i>meta</i>), 203.8 (-CHO), 206.5 (CH ₃ -C=O)	66.08 65.98	6.83 6.87
5a liquid	110 (1.2)	1715.2, 1587.7, 1512.9, 1454.2	1.60 (s, 3 H, -C-CH ₃), 2.58 (s, 2 H, -COCH ₂ -), 6.24 (d, 1 H, <i>J</i> = 5.6 Hz, -COCH=C-), 7.32 (s, 5 H, Ar-H), 7.74 (d, 1 H, <i>J</i> = 5.6 Hz, C <i>H</i> =CH-CO-)	$\begin{array}{l} 22.3 \ (CH_3\text{-}C), 48.2 \ (Ar\text{-}C), 54.3 \\ (CH_2\text{-}C=0), 124.9 \ (C_{arom} ortho), \\ 125.7 \ (C_{arom} para), 127.9 \\ (C_{arom} meta), 128.2 \ (\text{-}C=C\text{-}C=0), 146.5 \ (C_{arom}1), 147.6 \\ (\text{-}C=C\text{-}C=0), 200.1 \ (\text{-}C=0) \end{array}$	83.69 83.58	7.02 7.14
5b liquid	86 (0.4)	1709.0, 1655.0, 1580.0, 1500.0	1.76 (s, 3 H, -C-CH ₃), 2.51 (s, 3 H, Ar-CH ₃), 2.69, 2.72 (2 × s, 2 H, -COCH ₂ -), 6.48 (d, 1 H, J = 5.9 Hz, -CO-CH=CH-), 7.52 (s, 4 H, Ar-H), 8.00 (d, 1 H, $J = 5.9$ Hz, -CO-CH=CH-)	21.8 (Ar-CH ₃), 22.4 (CH ₃ -C-), 48.3 (Ar-C-), 56.9 (-CH ₂ -C=O), 126.6 (C _{arom} ortho), 128.7 (C _{arom} meta), 129.5 (-C=C- C=O), 135.1 (C _{arom} para), 144.5 (C _{arom} 1), 147.8 (-C=C-C=O), 200.2 (-C=O)	83.83 83.99	7.58 7.61

Table 2 (continued)

Compound	Bp/Mp [°C] (Torr)	IR [cm ⁻¹] (neat/nujol)	¹ H NMR (CDCl ₃) δJ (Hz)	¹³ C NMR (CDCl ₃) δ	Microanalysis calcd/found C	Н
5c liquid	158 (1.5)	1692.0, 1590.0, 1511.0, 1445.0	1.24 (s, 3 H, -C-CH ₃), 1.75 (m, 2 H, -C-CH ₂ -), 2.13 (d, 1 H, J = 18.6 Hz, -COCH ₂ -), 2.31 (d, 1 H, $J = 18.6$ Hz, -COCH ₂ -), 2.44 (m, 2 H, Ar-CH ₂ -), 3.79 (s, 3 H, -OCH ₃), 3.82 (s, 3 H, -OCH ₃), 6.01 (d, 1 H, $J = 5.5$ Hz, -CO-CH=CH-), 6.61–6.82 (m, 3 H, Ar-H), 7.42 (d, 1 H, J = 5.5 Hz, -CO-CH=CH-)	24.3 (CH_3 -C-), 31.4 (Ar - CH_2 -),39.3 (Ar - CH_2 - CH_2 -), 48.8 (CH_3 -C-),55.6 (- CH_2 - C=O), 55.9, 56.1 (2 × -OCH ₃), 113.2(C_{arom} 5meta), 114.2 (C_{arom} 2ortho), 120.7 (C_{arom} 6ortho), 129.3 (-C=C- C=O), 133.6 (C_{arom} 1), 145.6 (C_{arom} 4para), 147.9 (C_{arom} 3meta), 149.9 (-C=C- C=O), 200.4 (-C=O)	73.82 73.70	7.74 7.71
5d solid	83–84	1705.0, 1610.0, 1581.0, 1508.0	1.25 (s, 3 H, -C-CH ₃), 1.81 (m, 2 H, -C-CH ₂ -C), 2.17 (d, 1 H, J = 18.6 Hz, -COCH ₂ -), 2.38 (d, 1 H, $J = 18.6$ Hz, -COCH ₂ -), 2.51 (m, 2 H, Ar-CH ₂ -), 3.85 (s, 3 H, -OCH ₃), 6.06 (d, 1 H, J = 5.5 Hz, -CO-CH=CH-), 6.81 (d, 2 H, $J = 8.4$ Hz, Ar-H), 7.05 (d, 2 H, $J = 8.4$ Hz, Ar-H), 7.44 (d, 1 H, $J = 5.5$ Hz, -CO- CH=CH-)	24.1 (CH ₃ -C-), 31.5 (Ar- CH ₂ CH ₂ -), 39.6 (Ar-CH ₂ CH ₂), 48.8 (CH ₃ -C-), 55.5 (-CH ₂ - C=O), 56.1 (-O-CH ₃), 114.0 (C _{arom} meta), 128.7 (C _{arom} ortho), 129.1 (-C=C-C=O), 132.5 (C _{arom} 1), 149.2 (C _{arom} para), 149.9 (-C=C-C=O), 200.6 (-C=O)	78.29 78.10	7.88 8.04
5e viscous liquid	-	1704.2, 1588.3, 1471.2	$\begin{array}{l} 0.89{-}1.03 \ (\text{m, 6 H, 2} \times \text{CH}_3), \\ 1.2{-}1.46 \ (\text{m, 8 H, 2} \times {-}\text{CH}_2{-}\\ \text{CH}_2{-}), 2.57 \ (\text{s, 2 H, O=C-CH}_2), \\ 6.04 \ (\text{d, 1 H, }J = 5.9 \ \text{Hz, CO-}\\ \text{CH=CH}), 7.02 \ (\text{d, 1 H, }J = 5.9\\ \text{Hz, CO-CH=CH}) \end{array}$	14.1 (CH ₃ CH ₂ -), 18.7 (CH ₃ CH ₂ -), 34.5 (CH ₃ CH ₂ CH ₂ -), 45.3 (-C-CH=C), 55.2 (O=C-CH ₂), 128.9 (O=C-CH= CH-), 146.4 (O=C-CH=CH-), 202.2 (O=C-)	79.46 79.61	10.91 10.74
5f viscous liquid	-	1701.1, 1598.4, 1482.9	0.92–1.05 (m, 6 H, 2 × CH ₃), 1.21–1.48 (m, 10 H, 5 × -CH ₂ -), 2.23 (d, 1 H, $J = 17.3$ Hz, O=C-CH ₂), 2.39 (d, 1 H, J = 17.3 Hz, O=C-CH ₂), 6.08 (d, 1 H, $J = 6.1$ Hz, CO- CH=CH), 7.04 (d, 1 H, $J = 6.1$ Hz, CO-CH=CH)	14.1, 14.5 (CH_3CH_2 -), 18.5 ($CH_3CH_2CH_2C$), 22.8 ($CH_3CH_2CH_2CH_2C$), 28.2 ($CH_3CH_2CH_2CH_2C$), 28.2 ($CH_3CH_2CH_2CH_2C$), 34.7 ($CH_3CH_2CH_2C$), 35.2 (CH_3CH_2) C $H_2 CH_2C$), 45.2 (-CH=CH- C-), 55.6 (O=C-CH ₂), 128.2 (O=C-CH=CH-), 147.4 (O=C- CH=CH-), 202.6 (O=C-)	79.94 79.76	11.18 11.29
5g viscous liquid	-	1699.3, 1586.3, 1478.1	$\begin{array}{l} 0.92{-}1.0 \ (\mathrm{m}, 3 \ \mathrm{H}, \mathrm{CH}_3{-}\mathrm{CH}_2{-}), \\ 1.27 \ (\mathrm{s}, 3 \ \mathrm{H}, \mathrm{CH}_3\mathrm{C}{-}), \ 1.3{-}1.36 \\ (\mathrm{m}, 2 \ \mathrm{H}, \mathrm{CH}_3\mathrm{CH}_2{-}), \ 2.25 \ (\mathrm{d}, 1 \\ \mathrm{H}, J = 17.1 \ \mathrm{Hz}, \mathrm{O}{=}\mathrm{C}{-}\mathrm{CH}_2), \\ 2.37 \ (\mathrm{d}, 1 \ \mathrm{H}, J = 17.1 \ \mathrm{Hz}, \mathrm{O}{=}\mathrm{C}{-}\mathrm{CH}_2), \ 6.03 \ (\mathrm{d}, 1 \ \mathrm{H}, J = 6.2 \ \mathrm{Hz}, \\ \mathrm{CO}{-}\mathrm{CH}{=}\mathrm{CH}), \ 7.05 \ (\mathrm{d}, 1 \ \mathrm{H}, \\ J = 6.2 \ \mathrm{Hz}, \mathrm{CO}{-}\mathrm{CH}{=}\mathrm{CH}) \end{array}$	11.2 (CH ₃ CH ₂ -), 22.7 (CH ₃ C-), 32.8 (CH ₃ CH ₂ -), 43.1 (-CH=CH-C-), 56.3 (O=C- CH ₂), 124.9 (O=C-CH=CH-), 147.6 (O=C-CH=CH-), 201.1 (O=C-)	77.38 77.51	12.88 12.69
5j ⁽²⁶⁾ solid	148–149	1680.0, 1595.0, 1500.0, 1446.0	2.53 (m, 2 H, -CO-CH ₂ CH ₂), 2.99 (m, 2 H, -CO-CH ₂ -), 3.90 (s, 6 H, $2 \times$ -OCH ₃), 6.43 (s, 1 H, -CO-CH=C-), 6.88 (d, J = 7.6 Hz, 1 H, Ar-H), 7.11 (s, 1 H, Ar-H), 7.24 (d, $J = 7.6$ Hz, 1 H, Ar-H)	30.2 (-CO-CH ₂ CH ₂ -), 36.8 (-CH ₂ -C=O), 55.7, 55.9 (-OCH ₃), 114.7 (C _{arom} 5 <i>meta</i>), 115.6 (C _{arom} 2 <i>ortho</i>), 117.8 (C _{arom} 6 <i>ortho</i>), 131.1 (-C=C- C=O), 131.4 (C _{arom} 1), 147.1 (C _{arom} 4 <i>para</i>), 147.4 (C _{arom} 3 <i>meta</i>), 154.9 (-C=C- C=O), 201.1 (-C=O)	71.54 71.38	6.47 6.61

Synthesis 2004, No. 17, 2919–2926 © Thieme Stuttgart · New York

Acknowledgment

DSP and AKD would like to thank CSIR, New Delhi for the fellowship.

References

- (1) Tsunoda, T.; Kodama, M.; Ito, S. *Tetrahedron Lett.* **1983**, 24, 83.
- (2) Pattenden, G.; Teague, S. J. *Tetrahedron Lett.* **1982**, *23*, 5471.
- (3) Piers, E.; Karunaratne, V. J. Chem. Soc., Chem. Commun. 1983, 935.
- (4) Curran, D. P.; Chen, M.-H. *Tetrahedron Lett.* 1985, 26, 4991.
- (5) Billington, D. C.; Kerr, W. J.; Pauson, P. L. J. Organomet. Chem. 1987, 328, 223.
- (6) Sampath, V.; Lund, E. C.; Knudsen, M. J.; Olmstead, M. M.; Schore, N. E. J. Org. Chem. 1987, 52, 3595.
- (7) Ramaiah, M. Synthesis 1984, 529.
- (8) Mehta, G.; Srikrishna, A. Chem. Rev. 1997, 97, 671.
- (9) Paquette, L. A. Top. Curr. Chem. 1984, 119, 1.
- (10) Hudlicky, T.; Price, J. D. Chem. Rev. 1989, 89, 1467.
- (11) Curran, D. P. Synthesis 1988, 417.
- (12) Curran, D. P. Synthesis 1988, 489.
- (13) Schore, N. E. Chem. Rev. 1988, 88, 1081.
- (14) Trost, B. M. Angew. Chem., Int. Ed. Engl. **1986**, 25, 1; Angew. Chem. **1986**, 9, 1.
- (15) Ellison, R. A. Synthesis 1973, 397.
- (16) Trost, B. M. Chem. Soc. Rev. 1982, 141.
- (17) Paquette, L. A. Aldrichimica Acta 1984, 17, 43.
- (18) Negeshi, E.; Coperet, C.; Ma, S.; Liou, S.-Y.; Liu, F. *Chem. Rev.* **1996**, *96*, 365.
- (19) Mehta, G.; Karra, S. R. Tetrahedron Lett. 1991, 32, 3215.

- (20) (a) Kulkarni, M. G.; Pendharkar, D. S. *Tetrahedron Lett.* 1997, *53*, 3167. (b) Kulkarni, M. G.; Pendharkar, D. S. *J. Chem. Soc., Perkin Trans. 1* 1997, 3127.
- (21) Kulkarni, M. G.; Pendharkar, D. S.; Rasne, R. M. *Tetrahedron Lett.* **1997**, *38*, 1459.
- (22) (a) Claisen, L. Chem. Ber. 1912, 45, 3157. (b) Claisen, L. Chem. Ber. 1936, 69, 77.
- (23) Rhoads, S. J.; Raulins, N. R. Org. React. 1975, 22, 1.
- (24) von Smidt, J.; Hafner, W.; Jira, R.; Sedlmeier, J.; Sieber, R. Angew. Chem. 1959, 71, 176.
- (25) However, in some cases²⁰ it was possible to separate and characterize the individual *E* and *Z* isomers.
- (26) Under aldol condensation conditions product **5h** underwent isomerisation to compound **5j** through a deconjugation process^{27–30} via **5i** (Scheme 1).

Scheme 1

- (27) Atwater, N. W. J. Am. Chem. Soc. 1960, 82, 2847.
- (28) Conia, J. M.; Sandre-LeCratz, A. Tetrahedron Lett. 1962, 3,
- 505.
 (29) Newman, M. S.; DeVries, V.; Darlak, R. J. Org. Chem. 1966, 31, 2171.
- (30) Herrmann, J. L.; Kieczykowski, G. R.; Schlessinger, R. H. *Tetrahedron Lett.* **1973**, *26*, 2433.
- (31) Calculated on the basis of recovered substrate.
- (32) All the new compounds gave satisfactory analytical and spectroscopic data (Table 2).