# **Rotational Equilibria in 1,2,6-Trisubstituted Pyridinium Cations and Reactions of 2-Isopropylpyrylium Cations**

Alan R. Katritzky,\* Socrates N. Vassilatos and Mateo Alajarin-Ceron Department of Chemistry, University of Florida, Gainesville, FL 32611, USA

2-Isopropyl-6-phenyl- and 2,6-diisopropyl-pyridiniums with bulky 1-substituents show temperature-variable NMR spectra which are interpreted in terms of restricted rotation. 2-Isopropyl-4,6-diphenylpyrylium can be deprotonated at the isopropyl group to give an anhydro base which forms new pyryliums with electrophiles.

## **INTRODUCTION**

Vicinal trisubstituted benzenes show interesting kinetic and equilibrium rotational behaviour<sup>1-3</sup> owing to the occurrence of buttressing and gear effects.<sup>4</sup> This is particularly pronounced for 'Janus-like'5 unsymmetrical susbtituents, such as isopropyl. Since 1,2,6trisubstituted pyridinium cations are readily available from pyrylium cations and primary amines,<sup>6</sup> we have compounds containing  $\alpha$ -isopropyl investigated groups. In contrast to extensive work covering  $\alpha$ -aryl-,  $\alpha$ -primary alkyl- and  $\alpha$ -tert-butyl-pyryliums and -pyridiniums,<sup>6</sup> relatively few reports have appeared on such derivatives containing  $\alpha$ -sec-alkyl groups. We expected that  $\alpha$ -iso-propylpyryliums could show interesting properties, in that deprotonation should give fully substituted anhydro bases. Further, in the corresponding pyridiniums, 2-isopropyl groups could have special effects on the reactivity of adjacent Nsubstituents.

## **RESULTS AND DISCUSSION**

### **Preparation of compounds**

4,6-Diphenyl-2-isopropylpyrylium (1A) was previously reported as the tetrachloroferrate (FeCl<sub>4</sub><sup>-</sup>).<sup>7</sup> Cation 1A was prepared as the tetrafluoroborate from dypnone and isobutyryl chloride; BF<sub>3</sub> was found to be a better condensing agent than the FeCl<sub>3</sub> previously used.<sup>7</sup> 4-Phenyl-2,6-diisopropylpyrylium salts, 2A, were previously unknown; the tetrafluoroborate was from isobutyryl chloride and prepared methylstyrene by a method similar to that previously used to make 4-methyl-2,6-diisopropylpyrylium tetrafluoroborate.<sup>8</sup> 2,4-Diphenyl-6,7-dihydro-5H-cyclopenta[b]pyrylium tetrafluoroborate  $(3A)^9$  was prepared from the corresponding diketone and BF<sub>3</sub> with chalcone as a hydride acceptor; this improved the previously

reported yield.<sup>9</sup> The 8,8-dimethylchromylium tetrafluoroborate 4A was prepared from the appropriate chalcone and acetophenone using trityl tetrafluoroborate (for previous use of trityl tetrafluoroborate as a hydride acceptor, see Ref. 10). The new 11,11dimethylxanthylium triflate, **5A**, was obtained similarly, using triflic acid as a cyclizing agent (cf. Ref. 11).

The pyryliums were converted by ammonia into the corresponding pyridines (1B, 3B-5B) (Table 1) and by primary amines into a series of pyridinium salts 6-10 (Tables 2-4), as expected. Primary alkyl-primary amines reacted readily to give the pyridinium salts in high yields. Secondary alkyl-primary amines and aromatic amines, owing to their steric crowding or lower nucleophilicity, necessitated longer reaction time or the use of acid catalyst, and the yields were generally lower.

### Reactions at *a*-isopropyl groups

4,6-Diphenyl-2-isopropylidene-2H-pyran (11) was isolated as an unstable bright red solid by the reaction of the corresponding pyrylium, 1A, with KOBu<sup>t</sup>. The corresponding 4-substituted pyran, 12, has been previously reported<sup>13</sup> and is considerably more stable. A known analogue of 11 is stabilized by ring fusion.<sup>14</sup>



CCC-0030-4921/83/0021-0587\$04.50

ORGANIC MAGNETIC RESONANCE, VOL. 21, NO. 10, 1983 587

<sup>\*</sup> Author to whom correspondence should be addressed.

Table 1. Pyridines and pyridinium tetrafluoroborates 1B, 3B-5B

|                        |                     |              |                      |                  |                       | F    | ound (%) |     |                                      | Re   | quired (% | 6)  |
|------------------------|---------------------|--------------|----------------------|------------------|-----------------------|------|----------|-----|--------------------------------------|------|-----------|-----|
| Compound<br>No. N      | Method <sup>a</sup> | Yield<br>(%) | М.р.<br>(°С)         | Cryst. form      | Cryst. solv.          | С    | н        | N   | Molecular<br>formula                 | С    | н         | н   |
| 1B                     | I                   | 99           | 208-210              | Needles          | EtOH                  | 66.5 | 5.4      | 3.9 | C <sub>20</sub> H <sub>20</sub> BF₄N | 66.5 | 5.6       | 3.9 |
| 3B                     | 11                  | 95           | 142–145 <sup>5</sup> | Prisms           | EtOH-H <sub>2</sub> O | _    | —        |     |                                      |      | _         |     |
| 4B                     | 11                  | 94           | 209-211              | Prisms           | EtOH                  | 68.8 | 6.0      | 3.5 | $C_{23}H_{23}BF_4N$                  | 68.8 | 6.5       | 3.5 |
| 5B                     | н                   | 80           | 135137               | Microcrystalline | EtOH-H <sub>2</sub> O | 88.4 | 7.4      | 4.1 | C <sub>25</sub> H <sub>25</sub> N    | 88.4 | 7.4       | 4.1 |
| <sup>a</sup> See Exper | imental.            | c            |                      |                  |                       |      |          |     |                                      |      |           |     |

Lit. <sup>4</sup> m.p. 144–146°C.



d e f g h b с R = Me, Et, "Pr, 'Pr, "Bu, 'Bu, Ph, PhCH<sub>2</sub>, 3-Me-2-pyridyl,

k 1 i CH(Me)Ph, mesityl, CH(Me)<sup>i</sup>Pr

The pyran 11 reacted with HBF<sub>4</sub> to reform pyrylium 1A as expected. A variety of other electrophilic reagents also reacted with the anhydro base 11 to give new pyryliums 13; these included methyl iodide, acetyl chloride, two  $\alpha$ -haloketones and a vinylogous acid

chloride (see Table 8). The structures of all these new pyryliums were confirmed by elemental analysis and by their <sup>1</sup>H NMR spectra (Table 9); in all the compounds the geminal dimethyl group formed a 6H singlet at  $\delta$  1.9–1.6. Other CH<sub>2</sub> or CH<sub>3</sub> groups of the 2-substituent absorbed as expected, and the 1H doublet for H-5 was clearly seen on the edge of the aromatic multiplet at  $\delta$  8.6–8.4.

Several attempts were made to extend reactions of the type mentioned above to effect deprotonation of  $\alpha$ -isopropylpyridiniums **6a**, **6g** to methine bases of type 14, followed by capture with an electrophile E to form a new pyridinium 15, but they all failed.<sup>15</sup> Examination of models disclosed considerable steric hindrance between the N-substituent in 14 and one of the methyl groups in the stabilized planar form; it is known that exhaustive methylation of the C-methyl 1,2,6-trimethylpyridinium cation is groups in difficult.<sup>16,17</sup>



Table 2. 1-Substituted-4,6-diphenyl-2-isopropylpyridinium tetrafluoroborates, 6a-k

| •                                                                   |                        |                     |                        |              |                      |                          | F    | ound (% | .)  |                                                   | Re   | quired (? | %)  |
|---------------------------------------------------------------------|------------------------|---------------------|------------------------|--------------|----------------------|--------------------------|------|---------|-----|---------------------------------------------------|------|-----------|-----|
| No.                                                                 | 1-Substituent          | Method <sup>a</sup> | (h)                    | Yield<br>(%) | М.р.<br>(°С)         | Cryst. form <sup>c</sup> | с    | н       | N   | Molecular<br>formula                              | с    | н         | N   |
| <b>6</b> a                                                          | Methyl                 | H                   | 10                     | 98           | 188190               | Prisms                   | 67.3 | 5.8     | 3.7 | C <sub>21</sub> H <sub>22</sub> BF₄N              | 67.2 | 5.9       | 3.7 |
| <b>6</b> b                                                          | Ethyl                  | П                   | 10                     | 77           | 112–114              | Prisms                   | 67.8 | 6.3     | 3.6 | C <sub>22</sub> H <sub>24</sub> BF <sub>4</sub> N | 67.9 | 6.2       | 3.6 |
| 6c                                                                  | n-Propyl               | I I                 | 4                      | 100          | 143–144              | Prisms                   | 68.3 | 6.8     | 3.5 | C <sub>23</sub> H <sub>26</sub> BF₄N              | 68.0 | 6.6       | 3.5 |
| 6d                                                                  | Isopropyl              | П                   | 12                     | 82           | 198-200              | Prisms                   | 68.2 | 6.4     | 3.4 | C <sub>23</sub> H <sub>26</sub> BF₄N              | 68.0 | 6.6       | 3.5 |
| 6e                                                                  | n-Butyl                | I                   | 4                      | 100          | 129–130              | Microcrystalline         | 69.2 | 6.7     | 3.4 | C <sub>24</sub> H <sub>28</sub> BF <sub>4</sub> N | 69.1 | 6.8       | 3.4 |
| 6f                                                                  | sec-Butyl              | I                   | 24                     | 53           | 174–175              | Needles                  | 69.1 | 6.6     | 3.3 | C <sub>24</sub> H <sub>28</sub> BF <sub>4</sub> N | 69.1 | 6.8       | 3.4 |
| 6g                                                                  | Phenyl                 | II                  | 7 <sup>ь</sup>         | 96           | 195–197              | Prisms                   | 71.7 | 5.5     | 3.1 | C <sub>26</sub> H <sub>24</sub> BF <sub>4</sub> N | 71.4 | 5.5       | 3.2 |
| 6h                                                                  | Benzyl                 | 11                  | 10                     | 95           | 105–107              | Needles                  | 71.8 | 6.2     | 3.0 | C <sub>27</sub> H <sub>26</sub> BF₄N              | 71.8 | 5.8       | 3.1 |
| <b>6</b> ì                                                          | 3-Methyl-2-pyridyl     | 11                  | 20                     | 32           | 165–167              | Prisms                   | 68.8 | 5.6     | 6.1 | $C_{26}H_{25}BF_4N_2$                             | 69.0 | 5.5       | 6.2 |
| 6j                                                                  | 1-Phenylethyl          | П                   | 48                     | 47           | 22 <del>9</del> –231 | Needles                  | 72.0 | 6.1     | 3.0 | C <sub>28</sub> H <sub>28</sub> BF <sub>4</sub> N | 71.9 | 6.1       | 3.0 |
| 6k                                                                  | Mesityl                | I                   | <b>72</b> <sup>b</sup> | 15           | 210-212              | Plates                   | 72.6 | 6.3     | 2.9 | C <sub>29</sub> H <sub>30</sub> BF₄N              | 72.7 | 6.3       | 2.9 |
| <sup>a</sup> See Exp<br><sup>b</sup> Reflux.<br><sup>c</sup> From e | perimental.<br>thanol. |                     |                        |              |                      |                          |      |         |     |                                                   |      |           |     |

| Compound                                    |                        |                     | Time | Yield | M.n.              |                          | F            | ound (% | 5)  | Molecular                                                      | Re   | quired ( | %)  |
|---------------------------------------------|------------------------|---------------------|------|-------|-------------------|--------------------------|--------------|---------|-----|----------------------------------------------------------------|------|----------|-----|
| No.                                         | 1-Substituent          | Method <sup>a</sup> | (h)  | (%)   | (°C)              | Cryst. form <sup>b</sup> | с            | н       | N   | formula                                                        | С    | н        | N   |
| 7a                                          | Methyl                 | II                  | 10   | 100   | 15 <b>8-</b> -160 | Plates                   | 63.0         | 7.1     | 4.1 |                                                                | 63.4 | 7.1      | 4.1 |
| 7b                                          | Ethyl                  | 1                   | 10   | 94    | 147.5-148.5       | Prisms                   | 64.2         | 7.2     | 3.9 | C10H20BFAN                                                     | 64.2 | 7.4      | 3.9 |
| 7c                                          | n-Propyl               | I                   | 4    | 82    | 150151            | Prisms                   | 64.9         | 7.4     | 3.8 |                                                                | 65.1 | 7.6      | 3.8 |
| 7d                                          | Isopropyl              | 11                  | 12   | 90    | 210-212           | Needles                  | 64.8         | 7.4     | 3.8 | C <sub>20</sub> H <sub>20</sub> BF <sub>4</sub> N              | 65.1 | 7.6      | 3.8 |
| 7e                                          | <i>n</i> -Butyl        | I                   | 6    | 70    | 1 <b>97–198</b>   | Microcrystalline         | 65.7         | 8.1     | 3.6 | C <sub>21</sub> H <sub>20</sub> BF₄N                           | 65.8 | 7.9      | 3.6 |
| 7f                                          | sec-Butyl              | I                   | 24   | 70    | 165.5-166.5       | Prisms                   | 65. <b>9</b> | 7.8     | 3.6 |                                                                | 65.8 | 7.9      | 3.6 |
| 7g                                          | Phenyi                 | И                   | 12   | 92    | 303 (d)           | Plates                   | 68.4         | 6.5     | 3.4 | C <sub>23</sub> H <sub>26</sub> BF <sub>4</sub> N              | 68.0 | 6.6      | 3.5 |
| 7h                                          | Benzyl                 | 11                  | 10   | 96    | 230-231           | Prisms                   | 68.9         | 6.9     | 3.3 |                                                                | 69.1 | 6.8      | 3.4 |
| 7i                                          | 3-Methyl-2-pyridyl     | 11                  | 48   | 76    | 240-241           | Prisms                   | 66.1         | 6.5     | 6.5 | C <sub>22</sub> H <sub>27</sub> BF <sub>4</sub> N <sub>2</sub> | 66.0 | 6.5      | 6.7 |
| 7j                                          | 1-Phenylethyl          | H                   | 72   | 42    | 133–135           | Prisms                   | 69.5         | 7.0     | 3.2 |                                                                | 69.6 | 7.0      | 3.2 |
| <sup>a</sup> See Exp<br><sup>b</sup> From e | perimental.<br>thanol. |                     |      |       |                   |                          |              |         |     | 25 30 4                                                        |      |          |     |

Table 3. 1-Substituted-2,6-diisopropyl-4-phenylpyridinium tetrafluoroborates, 7a-j

|  | Table 4. | Miscellaneous | pyridinium | tetrafluoroborates. | 8-10 |
|--|----------|---------------|------------|---------------------|------|
|--|----------|---------------|------------|---------------------|------|

| Compound<br>No N-Substituent |                   |        | Time | Yield                  | M.p.    |                          | F    | ound (% | 5)  | Molecular                                                        | Re   | quired ( | %)  |
|------------------------------|-------------------|--------|------|------------------------|---------|--------------------------|------|---------|-----|------------------------------------------------------------------|------|----------|-----|
| No.                          | N-Substituent     | Method | (h)  | (%)                    | (°C)    | Cryst. form <sup>a</sup> | С    | н       | Ň   | formula                                                          | С    | н        | N   |
| 8d                           | Isopropyl         | II     | 70   | 64                     | 140–141 | Plates                   | 68.9 | 6.1     | 3.4 | C <sub>23</sub> H <sub>24</sub> BF₄N                             | 68.8 | 6.0      | 3.5 |
| 8j                           | 1-Phenylethyl     | 11     | 72   | 65                     | 150-152 | Prisms                   | 72.5 | 5.7     | 3.0 | C <sub>28</sub> H <sub>26</sub> BF₄N                             | 72.2 | 5.7      | 3.1 |
| 81                           | 2-(3-Methyl)butyl | 11     | 120  | 38                     | 173–175 | Sticks                   | 69.9 | 6.6     | 3.2 | C <sub>25</sub> H <sub>28</sub> BF <sub>4</sub> N                | 69.9 | 6.6      | 3.3 |
| <b>9</b> a                   | Methyl            | 1      | 7    | 45                     | 208-210 | Prisms                   | 69.5 | 6.4     | 3.3 | C <sub>24</sub> H <sub>26</sub> BF₄N                             | 64.9 | 6.3      | 3.4 |
| <b>9</b> g                   | Phenyl            | 1      | 11   | 40                     | 240-242 | Prisms                   | 72.9 | 5.9     | 2.9 | C <sub>29</sub> H <sub>28</sub> BF₄N                             | 73.0 | 5.9      | 2.9 |
| 10a                          | Methyl            | 11     | 35   | <b>80</b> <sup>ь</sup> | 184–186 | Sticks                   | 64.4 | 5.7     | 2.8 | C <sub>27</sub> H <sub>28</sub> F <sub>3</sub> NO <sub>3</sub> S | 64.4 | 5.6      | 2.8 |
| 10h                          | Benzyl            | 11     | 48   | 65 <sup>b</sup>        | 144146  | Needles                  | 68.0 | 5.7     | 2.4 | C <sub>33</sub> H <sub>32</sub> F <sub>3</sub> NO <sub>3</sub> S | 68.4 | 5.6      | 2.4 |
| <sup>a</sup> From e          | thanol.           |        |      |                        |         |                          |      |         |     |                                                                  |      |          |     |
| <sup>b</sup> As trif         | uoromethanesulpho | onate. |      |                        |         |                          |      |         |     |                                                                  |      |          |     |

### Reaction of the N-substituent group

In view of the resistance of the  $\alpha$ -isopropylpyridiniums to deprotonation at the 2-isopropyl group, we attempted deprotonation at the 1'-carbon of the *N*substituent. When compound **6a** (0.133 mol) was kept in DMSO- $d_6$  with D<sub>2</sub>O (4 mol) and NaOH (0.044 mol), the *N*-methyl signal disappeared in 1.5 min showing H–D exchange; the isopropyl signals remained unchanged. However, several attempts at preparative reactions with strong bases followed by electrophiles failed to give well defined products.<sup>15</sup>



### <sup>1</sup>H NMR spectra of 4,6-diphenyl-2-isopropyl- and 4phenyl-2,6-diisopropylpyridinium tetrafluoroborates

In the <sup>1</sup>H NMR spectra of pyridinium salts **6a-k** and **7a-j** (Tables 5 and 6, respectively) the aromatic protons on the heterocyclic and phenyl rings resonate as complex multiplets at  $\delta 8.45-6.75$ . The protons  $\alpha$ - to the nitrogen in the *N*-substituents are deshielded by the adjacent positively charged nitrogen and appear at  $\delta 6.60-4.07$ ; the  $\beta$ - and  $\gamma$ -hydrogens, experiencing less deshielding from the ring, resonate upfield at  $\delta 2.4-0.75$ , all with the expected multiplicities and coupling constants.<sup>18</sup> The terminal  $\delta$ -hydrogens in the case of the *n*-butyl group give a distorted triplet at  $\delta 0.7$ . The isopropyl groups show the methyl doublet at  $\delta 1.60-0.75$  and the methine septet at  $\delta 3.83-2.50$  [J(vic) = 6.5-7.1 Hz].

The isopropyl group patterns were, however, more complex for the  $N-\alpha$ -phenylethyl (**6j**, **7j**) and N-(3-methyl-2-pyridyl) (**6i**, **7i**) compounds. In **6i**, **6j** (Table 5) and **7i** (Table 6) the isopropyl group displays two different methyl signals, whereas in **7j** three methyl peaks are found with two septets for the CH group. These phenomena are due to restricted rotation.

The first example of the existence of two methyl doublets for isopropylpyridinium cations was reported by Balaban<sup>19</sup> for the 4,6-dimethyl-2-isopropyl-1-o-tolylpyridinium, which shows the phenomenon at 20 °C, in contrast to the 1-m-tolyl analogue which shows no splitting even at -60 °C. The Rumanian group has also investigated rotational barriers in 1-substituted 2,4,6-triphenylpyridinium cations;<sup>20</sup> the

|                                                                                            |                                                                                                                   |       |                 |      |      |      |       |   | 1-Substitue | 2111 |       |   |      |    |       |                            |                  |               |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------|-----------------|------|------|------|-------|---|-------------|------|-------|---|------|----|-------|----------------------------|------------------|---------------|
|                                                                                            |                                                                                                                   | Aron  | natic muitiplet |      |      | x-CH |       |   | Other pro   | tons |       |   | ω.   | сн |       | 2-                         | lsopropy         | 1             |
| Compound<br>No.                                                                            | -<br>1-Substituent                                                                                                | н     | δ               | н    | δ    | m    | J(Hz) | н | δ           | m    | J(Hz) | н | δ    | m  | J(Hz) | СН <sub>З</sub><br>(6Н, d) | J(Hz)            | CH<br>(sept.) |
| —                                                                                          | Hydrogen                                                                                                          | 12    | 8.25-7.15       |      |      | _    |       |   | _           |      |       |   | _    |    |       | 1.35                       | 7.0              | 3.15          |
| 6a                                                                                         | Methyl <sup>b</sup>                                                                                               | 12    | 8.05-7.30       | 3    | 4.07 | s    | _     |   |             |      |       |   |      |    |       | 1.54                       | 6.9              | 3.65          |
| 6b                                                                                         | Ethvi                                                                                                             | 12    | 8.00-7.25       | 2    | 4.45 | a    | 7.0   |   | _           |      |       | 3 | 1.25 | t  | 7.2   | 1.46                       | 7.0              | 3.53          |
| 6c                                                                                         | n-Propyl                                                                                                          | 12    | 8.25-7.10       | 2    | 4.40 | ť    | 7.8   | 2 | 2.20-1.65   | m    |       | 3 | 0.75 | t  | 6.6   | 1.55                       | 6.8              | 3.60          |
| 6d                                                                                         | Isopropyl                                                                                                         | 12    | 8.05-7.20       | 1    | 5.20 | sep  | 6.6   |   |             |      |       | 6 | 1.70 | d  | 6.6   | 1.57                       | 7.0              | 3.83          |
| 6e                                                                                         | n-Butvl                                                                                                           | 12    | 8.10-7.15       | 2    | 4.45 | t    | 7.8   | 4 | 3.80-3.30   | m    | _     | 3 | 0.70 | t  | 6.0   | 1.55                       | 6.9              | 3.58          |
| 6f                                                                                         | sec-Butvl                                                                                                         | 12    | 8.10-7.20       | 1    | 4.85 | m    | _     | 2 | 2.30-1.85   | m    | 7.0   | 3 | 0.75 | t  | 6.8   | 1.55                       | 6.7              | 3.75          |
|                                                                                            | <b>.</b>                                                                                                          |       |                 |      |      |      |       | 3 | 1.75        | d    |       |   |      |    |       |                            |                  |               |
| 6a                                                                                         | Phenyl                                                                                                            | 17    | 8.10-7.10       |      |      |      |       |   |             | c    |       |   |      |    |       | 1.32                       | 7.0              | 2.90          |
| 6h                                                                                         | Benzyl                                                                                                            | 17    | 8.206.75        | 2    | 5.85 | s    | _     |   |             |      |       |   |      |    |       | 1.35                       | 6.9              | 3.45          |
| <b>6</b> i                                                                                 | 3-Methyl-2-                                                                                                       |       |                 |      |      |      |       |   |             |      |       |   |      |    |       |                            |                  |               |
|                                                                                            | pyridyl                                                                                                           | 15    | 8.25-7.15       |      |      |      |       |   |             | -    |       | 3 | 2.60 | s  |       | 1.47                       | 6.9 <sup>d</sup> | 2.85          |
|                                                                                            | ., ,                                                                                                              |       |                 |      |      |      |       |   |             |      |       |   |      |    |       | 1.60                       | 7.0              |               |
| 6j                                                                                         | 1-Phenylethyl                                                                                                     | 17    | 7.45-6.95       | 1    | 6.25 | q    | 7.2   | 3 | 2.15        | d    | 7.2   |   |      | -  |       | 0.75                       | 6.5 <sup>d</sup> | 3.50          |
| -                                                                                          |                                                                                                                   |       |                 |      |      |      |       |   |             |      |       |   |      |    |       | 1.47                       | 6.7              |               |
| 6k                                                                                         | Mesityl                                                                                                           | 14    | 8.45-7.00       |      | _    | -    |       | 6 | 2.00        | s    |       | 3 | 2.30 | s  |       | 1.45                       | 7.1              | 2.90          |
| <sup>a</sup> In CDC<br><sup>b</sup> In CDC<br><sup>c</sup> In aron<br><sup>d</sup> See Div | I <sub>3</sub> with (CH <sub>3</sub> )₄S<br>I <sub>3</sub> CF <sub>3</sub> CO <sub>2</sub> H.<br>natic multiplet. | Si as | internal st     | anda | rd.  |      |       |   |             |      |       |   |      |    |       |                            |                  |               |

Table 5. <sup>1</sup>H NMR spectra<sup>a</sup> of 1-substituted-4,6-diphenyl-2-isopropylpyridinium tetrafluoroborates 6a-k L-Subetituent

barriers found were all greater than in the corresponding mesitylene derivatives, owing to a shorter C-N bond. <sup>1</sup>H NMR spectra of other compounds described in this paper are collected in Table 7; these spectra support the structural assignments made. In 81, the isopropyl methyl carbons appear as two doublets due to the adjacent asymmetric carbon atom.

### Variable-temperature NMR spectra

The <sup>1</sup>H NMR spectrum of 1-(3-methyl-2-pyridyl)-4,6diphenyl-2-isopropylpyridinium tetrafluoroborate (6i) at 23 °C (Table 5) shows similar behaviour-a septet at  $\delta$  2.85 and two methyl doublets at  $\delta$  1.60 and 1.47 [J(vic) = 7.0 and 6.9 Hz, respectively]. On heating, the two doublets broadened at 76 °C and coalesced at 106 °C into a single doublet at  $\delta$  1.5.

1-(3-Methyl-2-pyridyl)-4-phenyl-2,6-diisopropylpyr-idinium tetrafluoroborate (**7i**) shows a similar <sup>1</sup>H NMR spectrum-two methyl doublets for the isopropyls at  $\delta$  1.30 and 1.45 [J(vic) = 6.8 and 6.7 Hz, respectively] (Table 6). Heating a solution of 7i in DMSO caused no observable change: the energy barrier to rotation is evidently higher than in 6i.

| Table 6. | <sup>1</sup> H NMR | spectra <sup>a</sup> of | 1-substituted-2,6-diisopropyl-4-phenylpyridinium tetrafluoroborates, 7 | /a-j |
|----------|--------------------|-------------------------|------------------------------------------------------------------------|------|
|----------|--------------------|-------------------------|------------------------------------------------------------------------|------|

|                    |                                                                                                                                                                                |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       | 1-Substitue                                                                                                                                                                                                                                                                                                                                                                                       | ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Aron                                                                                                                                                                           | natic multiplet |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ∝-СН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       | Other prof                                                                                                                                                                                                                                                                                                                                                                                        | tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                      | ω-                                                                                                                                                                                                                                                                                                                                                                                                                                                    | СН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Isoprop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ound               |                                                                                                                                                                                |                 |                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | СН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-Substituent      | н                                                                                                                                                                              | δ               | н                      | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J(Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н                                                                                                                                                                                                                                                                                                                                                                                                                     | δ                                                                                                                                                                                                                                                                                                                                                                                                 | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J(Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | н                                                                                                                                                                                                                                                                                                                                                                                                                                    | δ                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J(Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (6H, d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J(Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (sep)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ь                  | 7                                                                                                                                                                              | 7.85-7.10       |                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Methyl             | 7                                                                                                                                                                              | 8.00-7.40       | 3                      | 4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ethyl              | 7                                                                                                                                                                              | 8.00-7.45       | 2                      | 4.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n-Propyl           | 7                                                                                                                                                                              | 7.95-7.40       | 2                      | 4.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.30-1.80                                                                                                                                                                                                                                                                                                                                                                                         | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Isopropyi          | 7                                                                                                                                                                              | 7.90-7.20       | 1                      | 5.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                       | —                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n-Butyl            | 7                                                                                                                                                                              | 7.85-7.35       | 2                      | 4.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.10-1.65                                                                                                                                                                                                                                                                                                                                                                                         | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| o Putral           | 7                                                                                                                                                                              | 700 7 20        | 1                      | E 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.40-1.90                                                                                                                                                                                                                                                                                                                                                                                         | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 00                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| S-Duty:            | '                                                                                                                                                                              | 7.90-7.20       | •                      | 5.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.83                                                                                                                                                                                                                                                                                                                                                                                              | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Phenyl             | 12                                                                                                                                                                             | 7.95–7.25       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       | —                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Benzyl             | 12                                                                                                                                                                             | 8.00-6.85       | 2                      | 5.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       | —                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3-Methyl-2-        |                                                                                                                                                                                |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| pyridyl            | 10                                                                                                                                                                             | 8.25-7.40       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                                                                                                |                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.0<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 Dhannaisteachadh | 10                                                                                                                                                                             | 0 45 7 90       | 4                      | 6 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.25                                                                                                                                                                                                                                                                                                                                                                                              | الم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.80-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1-Fnenyletny       | 12                                                                                                                                                                             | 0.49-7.20       | 1                      | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ч                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.25                                                                                                                                                                                                                                                                                                                                                                                              | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CDCL with (CH      | 1.5                                                                                                                                                                            | i as interna    | l eta                  | ndard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (i.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | ound<br>1-Substituent<br>b<br>Methyl<br>Ethyl<br>n-Propyl<br>Isopropyl<br>n-Butyl<br>s-Butyl<br>S-Butyl<br>Benzyl<br>3-Methyl-2-<br>pyridyl<br>1-Phenylethyl<br>CDCI2 with (CH | Aron<br>        | Aromatic multiplet<br> | Aromatic multiplet         ound         1-Substituent       H $\delta$ H         b       7       7.85–7.10       Methyl       7       8.00–7.40       3         Methyl       7       8.00–7.45       2       7       7.95–7.40       2         Isopropyl       7       7.95–7.40       2       1       n-Butyl       7       7.90–7.20       1         n-Butyl       7       7.90–7.20       1       12       7.90–7.20       1         Phenyl       12       7.95–7.25       2       3-Methyl-2-       2       3-Methyl-2-       10       8.25–7.40         1-Phenylethyl       12       8.45–7.20       1       1       CDClo with (CH_c) Si as internal state | Aromatic multiplet       Aromatic multiplet $^{ound}$ 1-Substituent       H $\delta$ H $\delta$ $^{b}$ 7       7.85–7.10       —       —         Methyl       7       8.00–7.40       3       4.25         Ethyl       7       8.00–7.45       2       4.70 $n$ -Propyl       7       7.95–7.40       2       4.50         Isopropyl       7       7.90–7.20       1       5.65 $n$ -Butyl       7       7.85–7.35       2       4.60         s-Butyl       7       7.90–7.20       1       5.25         Phenyl       12       7.95–7.25       —         Benzyl       12       8.00–6.85       2       5.97         3-Methyl-2-       pyridyl       10       8.25–7.40       —         1-Phenylethyl       12       8.45–7.20       1       6.90         CDClowith (CH_b).Si as internal standard. | Aromatic multiplet $\alpha$ -CH         ound       1-Substituent       H $\delta$ m         b       7       7.85–7.10       —         Methyl       7       8.00–7.40       3       4.25       s         Ethyl       7       8.00–7.45       2       4.70       q <i>n</i> -Propyl       7       7.95–7.40       2       4.50       t         Isopropyl       7       7.90–7.20       1       5.65       sep <i>n</i> -Butyl       7       7.90–7.20       1       5.25       t         Phenyl       12       7.95–7.25       —       —         Benzyl       12       8.00–6.85       2       5.97       s         3-Methyl-2-       pyridyl       10       8.25–7.40       —       —         1-Phenylethyl       12       8.45–7.20       1       6.90       q         CDClo with (CH_2) Si as internal standard.       Standard.       Standard. | Aromatic multiplet $\alpha$ -CHound<br>1-SubstituentH $\delta$ H $\delta$ m $J(Hz)$ b77.85–7.10Methyl78.00–7.4034.25sEthyl78.00–7.4524.70q7.0 $n$ -Propyl77.95–7.4024.50t9.0Isopropyl77.90–7.2015.65sep6.6 $n$ -Butyl77.85–7.3524.60t7.0s-Butyl77.90–7.2015.25t6.0Phenyl127.95–7.25Benzyl128.00–6.8525.97s3-Methyl-2-<br>pyridyl108.25–7.401-Phenylethyl128.45–7.2016.90q6.6CDClo with (CH_c) Si as internal standard | Aromatic multiplet $\alpha$ -CHound<br>1-SubstituentH $\delta$ H $\delta$ mb77.85–7.10Methyl78.00–7.4034.25sEthyl78.00–7.4524.70qn-Propyl77.95–7.4024.50tgoropyl77.90–7.2015.65sepn-Butyl77.85–7.3524.60tn-Butyl77.90–7.2015.25t6.02392Phenyl127.95–7.25Benzyl128.00–6.8525.97s3-Methyl-2-<br>pyridyl108.25–7.401-Phenylethyl128.45–7.2016.90q6.63CDClo with (CH_2)-Si as internal standard.55555 | I-SubstituteAromatic multiplet $\alpha$ -CHOther profound<br>1-SubstituentH $\delta$ H $\delta$ m $J(Hz)$ H $\delta$ b77.85–7.10Methyl78.00–7.4034.25sEthyl78.00–7.4524.70q7.0Ethyl78.00–7.4524.50t9.022.30–1.80Isopropyl77.95–7.4024.50t9.022.30–1.80Isopropyl77.90–7.2015.65sep6.6 <i>n</i> -Butyl77.85–7.3524.60t7.042.10–1.65s-Butyl77.90–7.2015.25t6.022.40–1.903-Betryl127.95–7.25Benzyl128.00–6.8525.97s3-Methyl-2-pyridyl108.25–7.401-Phenylethyl128.45–7.2016.90q6.632.25CDCla with (CH_)-Si as internal standard | I-SubstituentAromatic multiplet $\alpha$ -CHOther protonsound<br>1-SubstituentH $\delta$ H $\delta$ mb77.85–7.10——Methyl78.00–7.4034.25s—Ethyl78.00–7.4524.70q7.0—n-Propyl77.95–7.4024.50t9.022.30–1.80mIsopropyl77.90–7.2015.65sep6.6——n-Butyl77.85–7.3524.60t7.042.10–1.65ms-Butyl77.90–7.2015.25t6.031.83dPhenyl127.95–7.25—————3-Methyl-2-<br>pyridyl108.25–7.40————1-Phenylethyl128.45–7.2016.90q6.632.25dCDClo with (CH_c) Si as internal standard.CDCloSi as internal standard.——— | Aromatic multiplet $\alpha$ -CHOther protonsound<br>1-SubstituentH $\delta$ H $\delta$ mJ(Hz)H $\delta$ mJ(Hz)b77.85–7.10Methyl78.00–7.4034.25sEthyl78.00–7.4524.70q7.0n-Propyl77.95–7.4024.50t9.022.30–1.80mIsopropyl77.90–7.2015.65sep6.6n-Butyl77.85–7.3524.60t7.042.10–1.65ms-Butyl77.90–7.2015.25t6.022.40–1.90ms-Butyl77.95–7.25Benzyl128.00–6.8525.97s3-Methyl-2-pyridyl108.25–7.401-Phenylethyl128.45–7.2016.90q6.632.25d6.6 | I-SubstituentAromatic multiplet $\alpha$ -CHOther protons1-SubstituentH $\delta$ H $\delta$ m $J(Hz)$ H $\delta$ m $J(Hz)$ Hb77.85–7.10Methyl78.00–7.4034.25sEthyl78.00–7.4524.70q7.03n-Propyl77.95–7.4024.50t9.022.30–1.80mIsopropyl77.90–7.2015.65sep6.666n-Butyl77.85–7.3524.60t7.042.10–1.65m3s-Butyl77.90–7.2015.25t6.022.40–1.90m3s-Butyl77.95–7.253Phenyl127.95–7.2533-Methyl-2-pyridyl108.25–7.40331-Phenylethyl128.45–7.2016.90q6.632.25d6.6 | Aromatic multiplet $\alpha$ -CH       Other protons $\omega$ -         ound       1-Substituent       H $\delta$ H $\delta$ m $J(Hz)$ H $\delta$ $M$ $J(Hz)$ H $\delta$ $M$ $J(Hz)$ H $\delta$ $M$ $J(Hz)$ $H$ $\delta$ $M$ $J(Hz)$ $H$ $\delta$ $M$ | I-SubstituentAromatic multiplet $\alpha$ -CHOther protons $\omega$ -CHound<br>1-SubstituentH $\delta$ H $\delta$ m $J(Hz)$ H $\delta$ m $J(Hz)$ H $\delta$ mb77.85–7.10Methyl78.00–7.4034.25sEthyl78.00–7.4524.70q7.0-31.60tn-Propyl77.95–7.4024.50t9.022.30–1.80m-31.10tIsopropyl77.95–7.2015.65sep6.6-61.85dn-Butyl77.85–7.3524.60t7.042.10–1.65m-31.00ts-Butyl77.90–7.2015.25t6.031.83d7.0Benzyl127.95–7.25Benzyl128.00–6.8525.97s3'Methyl-2-<br>pyridyl108.25–7.4032.65s< | Aromatic multiplet $\alpha$ -CH       Other protons $\omega$ -CH         ound         1-Substituent       H $\delta$ m       J(Hz)       H $\delta$ m       J(Hz) | I-SubstituentAromatic multiplet $\alpha$ -CHOther protons $\omega$ -CH2.6ound<br>1-SubstituentH $\delta$ H $\delta$ m $J(H_2)$ H $\delta$ m $J(H_2)$ H $\delta$ m $J(H_2)$ (6H, d)b77.85–7.101.30(6H, d)1.45b77.85–7.4034.25s1.45Ethyl78.00–7.4524.70q7.0-31.60t7.21.55n-Propyl77.95–7.4024.50t9.022.30–1.80m-31.10t7.21.45Isopropyl77.90–7.2015.65sep6.6-61.85d6.61.55n-Butyl77.90–7.2015.25t6.022.40–1.90m-31.00t6.91.52s-Butyl77.95–7.251.3731.00t6.91.52Phenyl127.95–7.251.3731.00t6.91.52Phenyl128.00–6.8525.97s1.3731.453-Methyl-2-<br>pyridyl108.25–7.4032.65s- $\begin{cases} 1.30\\ 1.45\\ 1.70 \end{cases}$ 1-Phenylethy | Aromatic multiplet $\alpha$ -CH         Other protons $\omega$ -CH         2,6-lsoprop           ound         1-Substituent         H $\delta$ m         J(Hz)         H $\delta$ T         H $\delta$ T         T         H $\delta$ T         T         H $\delta$ |

<sup>b</sup> 4-Phenyl-2,6-diisopropylpyridine.

<sup>c</sup> See Discussion.

<sup>d</sup> Broad.

| anound |                        | Aron | natic multiplet |   | N-subst   | ituent |                  |                       | Meth | ylene multiple |
|--------|------------------------|------|-----------------|---|-----------|--------|------------------|-----------------------|------|----------------|
| No.    | N-substituent          | н    | δ               | н | δ         | m      | J                | – gem. diMe<br>(6H,s) | н    | δ              |
| 8d     | Isopropyl              | 11   | 7.70–7.30       | 1 | 5.10      | sep    | 6.6              |                       | 4    | 3.80-3.0       |
|        |                        |      |                 | 6 | 1.60      | d      | 6.6              |                       | 2    | 2.60-2.1       |
| 8j     | CH(Me)Ph               | 16   | 7.807.00        | 1 | 6.20      | q      | 7.0              |                       | 4    | 3.60-2.9       |
|        | •                      |      |                 | 3 | 2.10      | d      | 7.0              |                       | 2    | 2.35-1.9       |
| 81     | CH(Me) <sup>/</sup> Pr | 11   | 7.80-7.30       | 1 | 4.55-4.49 | m      |                  | _                     | 4    | 3.80-3.0       |
|        |                        |      |                 | 1 | 2.42      | m      |                  |                       |      |                |
|        |                        |      |                 | 3 | 1.77      | d      | 6.8 <sup>b</sup> |                       | 2    | 2.60-2.0       |
|        |                        |      |                 | 3 | 0.90      | d      | 6.3 <sup>b</sup> |                       |      |                |
|        |                        |      |                 | 3 | 0.68      | d      | 6.3 <sup>b</sup> |                       |      |                |
| 4B     |                        | 11   | 7.90-7.00       |   | —         |        |                  | 1.4                   | 2    | 2.80-2.4       |
|        |                        |      |                 |   |           |        |                  |                       | 4    | 2.10-1.3       |
| 9a     | Me                     | 11   | 7.80-7.30       | 3 | 4.20      | s      |                  | 1.8                   | 2    | 3.05-2.0       |
|        |                        |      |                 |   |           |        |                  |                       | 4    | 2.15-1.8       |
| 9g     | Ph                     | 16   | 7.907.00        |   | c         |        |                  | 1.2                   | 2    | 3.20-2.8       |
|        |                        |      |                 |   |           |        |                  |                       | 4    | 2.10-1.0       |
| 5B     |                        | 9    | 7.70–7.00       |   | _         |        |                  | 1.45                  | 10   | 2.90-1.        |
| 10a    | Me                     | 9    | 8.00-7.10       | 3 | 4.50      | S      | _                | 1.7                   | 10   | 3.00-1.8       |
|        | DHCU                   | 1/1  | 8 30-6 90       | 2 | 640       | e      |                  | 10                    | 10   | 2 90_1 -       |

1-(1-Phenylethyl)-4,6-diphenyl-2-isopropylpyridinium tetrafluoroborate (6j) also shows in the <sup>1</sup>H NMR spectrum (Table 5) at 23 °C a methine septet at  $\delta$  3.5, and two well separated methyl doublets at  $\delta$  1.47 and 0.75 [J(vic) = 6.7 and 6.5 Hz], as well as the signals for the N- $\alpha$ -phenylethyl group. The preferred spatial arrangement of the adjacent bulky substituents will be as shown in 16, so that the methine proton of the Nsubstituent lies in the same plane as the pyridinium ring with the methyl and phenyl groups above and below. Similarly, the methine proton of the isopropyl group lies in the same plane as the pyridinium ring with the two methyl groups above and below. One of the methyl groups of the isopropyl moiety is considerably shielded by the magnetic anisotropy of the phenyl ring,<sup>18</sup> and thus resonates at higher field than the other methyl group. We attempted to induce faster rotation by heating 6j in CDCl<sub>3</sub> solution. At 52 °C the three N-CHMePH, doublets (one from two from 2-CHMe<sub>2</sub>) collapsed into a single doublet. However, this doublet remained unchanged on cooling. Further, a series of peaks related to an AMX spin system<sup>21</sup> were seen in the spectrum and, evidently, irreversible formation of styrene and 4.6-diphenyl-2-isopropylpyridine had occurred. Re-

- 1----



cently,<sup>22,23</sup> similar loss of the N-substituent was observed in the reaction of 2,4,6-triphenylpyrylium tetrafluoroborate with  $\alpha$ -methylbenzylamine, at 20 °C in dichloromethane. The expected pyridinium salt dissociated *in situ* to 2,4,6-triphenylpyridine, and the carbocation PhCH<sup>+</sup>Me could be trapped by nucleophiles.

Heating the pyridinium salt **6j** in acetonitrile- $d_3$  up to 64 °C caused neither coalescence nor elimination of the *N*-substituent. Apparently, the barrier to rotation around the N(sp<sup>2</sup>)--C(sp<sup>3</sup>) bond is too high to show coalescence. Further, the solvent evidently plays a role in the elimination of the *N*-substituent as styrene.

| Table 8.              | Preparation of pyry          | lium salts 13 from                                  | n the | anhydro b | ase 11         |       |     |                                                     |         |                  |
|-----------------------|------------------------------|-----------------------------------------------------|-------|-----------|----------------|-------|-----|-----------------------------------------------------|---------|------------------|
|                       |                              |                                                     |       | 5         |                | Found | (%) |                                                     | Require | d (%)            |
| Compound              |                              | Substituent                                         | Yield | М.р.      |                |       |     | Molecular                                           |         |                  |
| No.                   | Electrophile                 | (R)                                                 | (%)   | (°C)      | Cryst. form    | С     | н   | formula                                             | С       | н                |
| 13a                   | Mel                          | Me                                                  | 55    | 260-262   | Yellow needles | 66.9  | 5.6 | C <sub>21</sub> H <sub>21</sub> BF₄O                | 67.0    | 5.6              |
| 13b                   | MeCOCI                       | MeCO                                                | 42    | 192–194   | Yellow prisms  |       | а   | $C_{22}H_{21}BF_4O_2$                               |         |                  |
| 13c                   | PhCOCH <sub>2</sub> Br       | PhCOCH <sub>2</sub>                                 | 31    | 191–194   | Yellow needles | 69.8  | 5.3 | $C_{28}H_{25}BF_4O_2$                               | 70.0    | 5.2              |
| 13d                   | 4-BrC <sub>6</sub> H₄COCH₂Br | 4-BrC <sub>6</sub> H <sub>4</sub> COCH <sub>2</sub> | 50    | 213-215   | Yellow prisms  | 60.0  | 4.4 | C <sub>28</sub> H <sub>24</sub> BBrF₄O <sub>2</sub> | 60.1    | 4.3 <sup>b</sup> |
| 13e                   | PhCOCH-CHCI                  | PhCOCH-CH                                           | 28    | 166168    | Yellow needles | 70.7  | 5.1 | C29H25BF4O2                                         | 70.7    | 5.1              |
| ^ m/e: (İ             | I⁺—MeCO, 100%).              |                                                     |       |           |                |       |     |                                                     |         |                  |
| <sup>b</sup> Br: foun | d, 14.1; required, 14        | .3%.                                                |       |           |                |       |     |                                                     |         |                  |

| Table 9.                                                  | H NNR spectra                                             | or 2-subsu                  | tuteu-  | +,0-uipnei  | тугругу | LIUHE |                |                             |
|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------|---------|-------------|---------|-------|----------------|-----------------------------|
|                                                           |                                                           |                             | Other 2 | tons (s)    | H-5 (1  | H, d) | Otner ar<br>(m | omatic protons<br>ultiplet) |
| Compound<br>No.                                           | Substituent<br>(R)                                        | Geminal diMe<br>(6H, s)     | н       | δ           | δ       | J     | н              | δ                           |
| 13a                                                       | Me                                                        | 1.60                        | 3       | 1.60        | 8.40    | 2.0   | 11             | 8.20-7.40                   |
| 13b                                                       | MeCO                                                      | 1.95                        | 3       | 2.20        | 8.50    | 2.0   | 11             | 8.30-7.50                   |
| 13c                                                       | PhCOCH <sub>2</sub>                                       | 1.85                        | 2       | 3.90        | 8.50    | 2.0   | 16             | 8.30-7.30                   |
| 13d                                                       | 4-BrC <sub>6</sub> H₄COCH₂                                | 1.80                        | 2       | 3.95        | 8.50    | 2.0   | 15             | 8.30-7.50                   |
| 13e                                                       | PhCOCH-CH                                                 | 1.90                        |         | ь           | 8.60    | 2.0   | 18             | 8.30-7.30                   |
| <sup>a</sup> in CDCl <sub>3</sub><br><sup>b</sup> Appears | $_{3}$ -CF <sub>3</sub> COOH (5:1) v<br>in the aromatic n | vith (CH₃)₄Si<br>nultiplet. | as inte | ernal stand | lard.   |       |                |                             |

 Table 9. <sup>1</sup>H NMR spectra<sup>a</sup> of 2-substituted-4,6-diphenylpyryliums

In the 300 MHz <sup>1</sup>H NMR spectrum of 1-(1phenylethyl)-4-phenyl-2,6-diisopropylpyridinium tetrafluoroborate (**7j**) at 25 °C (Table 6), the methyl groups of the isopropyl substituents resonate as three broad singlets; the peaks at  $\delta$  0.8 and 1.45 integrate for three protons each, and that at  $\delta$  1.7 integrates for six protons. The methyl protons of the N-(1phenylethyl) group appear as a doublet at  $\delta$  2.3 [J(vic) = 6.6 Hz]. The methine protons of the isopropyl substituents give two broad peaks at  $\delta$  3.5 and 4.0. The methine proton of the N-(1-phenylethyl) group resonates as a quartet at  $\delta$  6.9. The aromatic protons appear as a complex multiplet at  $\delta$  8.45–7.2, in which the most downfield singlet at  $\delta$  8.4 belongs to the  $\beta$ -protons of the pyridinium ring.<sup>24</sup>

At -20 °C the signals due to the methyl protons of the two isopropyl groups sharpen and split; the two most shielded signals at  $\delta 0.8$  and 1.45 become two sharp doublets [J(vic) = 6.6 Hz], while the signal at  $\delta 1.7$  splits to two narrowly separated doublets [J(vic) = 6.6 Hz]. Thus, all the four methyl groups of the two isopropyl substituents are non-equivalent, owing both to the presence of the bulky N-(1phenylethyl) substituent which possesses an asymmetric centre and to the restricted rotation around the  $N(sp^2)$ — $C(sp^3)$  bond as well as the C—C bonds. At -20 °C, the methine isopropyl signals split into two multiplets at  $\delta$  4.0 and 3.5. However, the doublet at  $\delta$  2.3 and the quartet at  $\delta$  6.9, due to the methyl and methine protons, respectively, of the N-(1-phenylethyl) group are unchanged by lowering the temperature. The most deshielded aromatic peak at  $\delta 8.4$ , which is due to the  $\beta$ -protons of the pyridinium ring, also becomes sharper on cooling.

Decoupling experiments were carried out at -20 °C. Irradiation of the doublet at  $\delta$  2.3 collapsed the guartet at  $\delta 6.9$  into a singlet; this confirms that this doublet is due to the methyl and the quartet is due to the methine of the N-(1-phenylethyl) group. Irradiating the most deshielded septet at  $\delta 4.0$  collapsed the two doublets at  $\delta$  1.75 and 1.70 (which are the most deshielded of the four doublets attributable to the isopropyl methyls) into two singlets. This shows that the septet at  $\delta$  4.0 and the doublets at  $\delta$  1.75 and 1.70 belong to the same isopropyl group. Further, irradiating the septet at  $\delta$  3.5 collapsed the doublets at  $\delta$  1.45 and 0.8 into two singlets, showing that these peaks are due to the same isopropyl group. The most shielded doublet at  $\delta 0.8$  belongs to a methyl group which lies above the plane of the phenyl ring of the N-(1phenylethyl) substituent and, thus, owing to the anisotropy of the phenyl ring<sup>18</sup> is considerably shielded (cf. the shielding observed in the <sup>1</sup>H NMR spectrum of 1-(1-phenylethyl)-4,6-diphenyl-2-iso-propylpyridinium tetrafluoroborate (**6j**).

On heating, the signals due to the methyl and methine protons of the isopropyl groups broaden further. At 60 °C, the two peaks due to the isopropyl methine protons are no longer discernible and the methyl signals show extreme broadening. However, the pyridinium  $\beta$ -proton signal (at  $\delta 8.4$ ) becomes sharper on heating. As the temperature increases, the rotation around the  $N(sp^2)-C(sp^3)$  bond becomes faster, and the rate of the exchange is such that the protons of the two isopropyl groups experience an averaged environment and, thus, resonate as very broad peaks (coalescence). The two  $\beta$ -protons of the pyridinium ring, as the temperature and the rate of rotation increase, experience averaged environments and collapse to a singlet. However, even when fast rotation of each of the 1-, 2- and 6-substituents is achieved, the chiral center of the 1-substituent is retained and the diastereotopic nature of the isopropyl methyl groups is expected to be observed.

Prolonged heating of 7j in DMSO- $d_6$  results in the loss of the N-1-(phenylethyl) substituent as styrene and the formation of 4-phenyl-2,6-diisopropylpyridine, as observed for N-(1-phenylethyl)-4,6-diphenyl-2-isopropylpyridinium tetrafluoroborate (6j).

In the 25 MHz <sup>13</sup>C NMR spectrum of **7j** at 23 °C the four methyl carbon atoms of the isopropyl substituents give two broad peaks at  $\delta$  23.2 and 21.7, while the methyl carbon atom of the *N*-substituent resonates upfield at  $\delta$  18.6 (all quartets in the off-resonance spectrum). The methine carbon atoms of the isopropyl groups appear as a sharp signal at  $\delta$  32.3, while the methine carbon atom of the 1-phenylethyl group resonates downfield at  $\delta$  60.9 (both doublets in the offresonance spectrum). At -40 °C, the signals at  $\delta$  23.0 and 21.7 split into four sharp singlets which correspond to the four diastereotopic methyl carbon atoms of the isopropyl substituents. The other aliphatic peaks show no change.

The 75 MHz<sup>13</sup>C spectrum, at 24 °C, displays four signals for the methyl carbon atoms of the isopropyl groups which on cooling to -20 °C become sharper but on heating to 50 °C collapse into two broad peaks. Dramatic changes occur in some of the aromatic signals. Four broad peaks at  $\delta$  166.2, 163.5, 123.0 and 120.4 in the spectrum at 24 °C on cooling to -20 °C

| _               |              | Substituents |              |                 |                                 |                   |           |                    |                           |
|-----------------|--------------|--------------|--------------|-----------------|---------------------------------|-------------------|-----------|--------------------|---------------------------|
| Compound<br>No. | 6            | 1            | 2            | Spectrum        | Coalescence<br>process observed | Solvent           | т<br>(°С) | Δ <i>ν</i><br>(Hz) | ∆G <sup>≠</sup><br>(kcal) |
| 6i              | Ph           | 3-Me-2-Py    | <i>i-</i> Pr | ١H              | Me of <i>i</i> -Pr              | DMSO              | 82±5      | 13                 | 18.5±0.3                  |
| 7i              | <i>i-</i> Pr | 3-Me-2-Py    | <i>i-</i> Pr | <sup>1</sup> H  | Me of <i>i</i> -Pr              | DMSO              | >106      | 20                 | >20                       |
| 6j              | Ph           | CHMePh       | <i>i-</i> Pr | ١H              | Me of <i>i</i> -Pr              | DMSO              | >52       | 16                 | >16                       |
| 7j              | i-Pr         | CHMePh       | <i>i-</i> Pr | ΊH              | Me of <i>i</i> -Pr              | DMSO              | 35        | 219                | 14.2±0.3                  |
|                 |              |              |              | ۱H              | Me of <i>i</i> -Pr              | Acetone           | 12        | 195                | 13.7±0.3                  |
|                 |              |              |              | <sup>13</sup> C | Me of <i>i-</i> Pr              | CDCl <sub>3</sub> | 50        | 50                 | 15.9±0.3                  |
|                 |              |              |              | <sup>13</sup> C | 2,6-C of ring                   | CDCl <sub>3</sub> | 50        | 207                | $15.0 \pm 0.3$            |
|                 |              |              |              | <sup>13</sup> C | 3,5-C of ring                   | CDCl <sub>3</sub> | 50        | 199                | $15.0\pm0.3$              |

Table 10. Rotational barriers for coalescence data

become four sharp singlets; on heating to 50 °C, however, they become so broad, owing to fast exchange, that they are no longer discernible. Off-resonance studies showed that the two peaks at low field, at  $\delta$  166.2 and 163.5, are due to quaternary carbon atoms which we assign to the  $\alpha$ -carbon atoms of the pyridinium ring;<sup>25-27</sup> the other two peaks, at  $\delta$  123.0 and 120.4, are due to methine carbon atoms which are the  $\beta$ -carbon atoms of the pyridinium ring;<sup>25-27</sup> The unusual long-range effect of the isopropyl group on the <sup>13</sup>C chemical shifts<sup>1</sup> must also be considered.

These <sup>13</sup>C NMR studies revealed non-equivalence of the methyl carbon atoms of the isopropyl substituents (but not that of the methine carbon atoms) and of the  $\alpha$ - and  $\beta$ -carbon atoms of the pyridinium ring.

#### **Rotational energy barriers**

The energy barriers calculated for the coalescence data are collected in Table 10. There has recently been considerable interest in rotational barriers in isopropyl compounds, for example in N,N-diisopropylamides.<sup>4b</sup> In 2-isopropylmesitylene, the barrier to Ar-Pr<sup>i</sup> rotation is 13.1 kcal mol<sup>-1</sup>.<sup>1</sup>

For compounds **6i** and **7i**, the processes observed are clearly the rotation of the N—C bond joining the two rings (rotation about the C-2—*i*-Pr bond would not result in methyl group non-equivalence): the situation is similar to 2,4,6-triisopropylbenzophenone, for which the barrier to the Ar—COPh rotation is  $16.2 \text{ kcal mol}^{-1.2}$ 

In 1,3-dibenzyl-4,5-diisopropylimidazoline-2-thione (17), exchange of the two isopropyl groups between geared conformations shows a barrier to rotation of 11.5 kcal mol<sup>-1</sup>: two other barriers at 10.6 and  $8.5 \text{ kcal mol}^{-1}$  arise from rotation of the two benzyl groups.<sup>5</sup> A similar situation is expected for 7i: here rotation of the phenylethyl group about the N-C bond will be sufficient to cause equivalence of the  $\alpha \alpha'$ and  $\beta\beta'$  carbon atoms; the barrier found here is  $15.0 \text{ kcal mol}^{-1}$ . A significantly higher barrier of  $15.9 \text{ kcal mol}^{-1}$  is found for coalescence of the methyl groups, for which rotation of the isopropyl groups about the C-C bond must also occur. The barrier for rotation around the C-2-isopropyl bond can only be observed in the <sup>13</sup>C NMR spectrum; for the barrier to rotation about the N-CHMePh bond considerable variation with solvent is found.

### **EXPERIMENTAL**

Melting points were determined with a Reichert or Kofler type hot-stage apparatus and are uncorrected. IR spectra were recorded on Perkin-Elmer 297 or 283B spectrophotometers. The 60 MHz <sup>1</sup>H NMR spectra were recorded on Perkin-Elmer R12, Varian A60-A, Jeol JNM-PMX 60 and Varian EM 360 L spectrometers; 100 MHz <sup>1</sup>H and 25 MHz <sup>13</sup>C NMR spectra were recorded in CDCl<sub>3</sub> on a Jeol FX 100 spectrometer equipped with a variable-temperature controller. The 300 MHz <sup>1</sup>H and 75 MHz <sup>13</sup>C NMR spectra were recorded on a Nicolet NT-300 spectrometer, operating at a field of 7 tesla, equipped with a variable-temperature controller.

# 4,6-Diphenyl-2-isopropylpyrylium tetrafluoroborate (1A)

Dypnone (12 g, 54 mmol), isobutyryl chloride (12 ml, 108 mmol) and boron trifluoride dietherate (27 ml of 47% solution, 89 mmol) were heated at 100 °C for 2 h. Diethyl ether (500 ml) precipitated the pyrylium **1A** from the reaction mixture; recrystallization from methanol gave bright yellow needles (8.0 g, 41%), m.p. 244–246 °C. Analysis: calculated, C 66.3, H 5.3; found, C 66.1, H 5.1%.  $\nu_{max}$  (CHBr<sub>3</sub>) 1630, 1600, 1520 cm<sup>-1</sup>;  $\delta$ (CF<sub>3</sub>COOH), 1.60 (d, J 6 Hz, 6H), 3.6 (sept, 1H), 8.6–7.6 (m, 12 H).

# 4-Phenyl-2,6-diisopropylpyrylium tetrafluoroborate (2A)

α-Methylstyrene (2.5 g, 0.021 mol) was added slowly at 0 °C, with stirring, to anhydrous aluminum chloride (2.8 g, 0.021 mol) in isobutyryl chloride (4.5 g, 0.042 mol). After 24 h at 23 °C, ice (50 g) and 2 N HCl (50 ml) were added and impurities were extracted with diethyl ether (100 ml). Fluoroboric acid (5 ml of a 40% aqueous solution) was added and the mixture extracted with dichloromethane (200 ml). The dry (MgSO<sub>4</sub>) extracts were evaporated (to 15 mmHg, 50 °C). Diethyl ether was added to the residue to give *pyrylium* **2A**, which recrystallized from methanol as creamy flakes (1.0 g, 15%), m.p. 179–181 °C. Analysis: calculated, C 62.2, H 6.4; found, C 62.2, H 6.4%.  $\nu_{max}$  (CHBr<sub>3</sub>) 1645, 1600 and 1530 cm<sup>-1</sup>; δ (CDCl<sub>3</sub>) 1.45 (d, J 6 Hz, 12 H), 3.5 (sept. 2 H), 7.3-8.3 (m, 7 H).

# 2,4-Diphenyl-6,7-dihydro-5*H*-cyclopenta[*b*]pyrylium tetrafluoroborate (3A)

3-(Cyclopentan-2-one)-1,3-diphenylpropane-1-one<sup>28</sup> (4.0 g, 13.7 mmol), benzylideneacetophenone (2.85 g, 13.7 mmol) and boron trifluoride etherate (3.5 ml of a 47% solution in diethyl ether, 11.5 mmol) were heated at 100 °C for 2 h. Diethyl ether (90 ml) was added to give the pyrylium **3A** as purple-brown prisms (4.1 g, 84%), m.p. 224-227 °C (lit.<sup>9</sup> m.p., 226-228 °C) Analysis: calculated, C 66.7, H 4.8; found, C 66.9, H 4.8%.  $\nu_{max}$  (CHBr<sub>3</sub>) 1615, 1500, 1465 cm<sup>-1</sup>;  $\delta$ (CF<sub>3</sub>COOH) 2.55 (m, 2 H), 3.5 (m, 4 H), 7.6-8.4 (m, 11 H).

### 8,8-Dimethyl-2,4-diphenyl-5,6,7,8-tetrahydrochromylium tetrafluoroborate (4A)

2,2-Dimethyl-6-benzylidenecyclohexanone (2.5 g, 0.12 mol)<sup>29</sup>, acetophenone (0.7 g, 0.006 mol) and trityl fluoroborate (2 g, 0.006 mol) were heated at 100 °C for 1 h. Ethanol (5 ml) and fluoroboric acid (0.5 ml of a 48% aqueous solution) were added and the mixture heated at 100 °C for 5 min. Diethyl ether (100 ml) gave the *chromylium* **4A**, which crystallized from ethanol as yellow prisms (1.0 g, 42%), m.p. 198-200 °C. Analysis: calculated, C 68.2, H 5.8; found, C 68.6, H 5.8%.  $\nu_{max}$  (CHBr<sub>3</sub>) 1615, 1580, 1500, 1470 cm<sup>-1</sup>;  $\delta$ (CDCl<sub>3</sub>) 1.6 (s, 6 H), 1.5–2.1 (m, 4 H), 2.85 (m, 2 H), 7.4–8.15 (m, 11 H).

### 11,11-Dimethyl-7-phenyl-5,6,8,9,10,11-hexahydrobenzo[c]xanthylium triflate (5A)

2,2-Dimethyl-6-benzylidenecyclohexanone (3.0 g, 0.014 mol),<sup>29</sup>  $\alpha$ -tetralone (1.02 g, 0.007 mol) and triffic acid (1.06 g, 0.63 ml) were heated at 100 °C for 2 h. Acetone (5 ml) and diethyl ether (100 ml) were added to give the *xanthylium* **5A** as bright yellow needles (2.9 g, 85%), m.p. 267-270 °C. Analysis: calculated, C 63.7, H 5.1; found, C 63.6, H 5.1%.  $\nu_{max}$  (CHBr<sub>3</sub>) 1610, 1570, 1480 cm<sup>-1</sup>;  $\delta$ (CDCl<sub>3</sub>-CF<sub>3</sub>COOH, 1:1) 1.65 (s, 6 H), 1.7-3.2 (m, 10 H), 7.2-8.25 (m, 9 H).

### General procedure for the preparation of pyridines

**Method I.** Ammonia gas was passed for 1 h into the pyrylium (1.0 g) in dichloromethane (40 ml) at 25 °C. The mixture was stirred at 23 °C for 5 h. Removal of solvent gave the pyridine.

**Method II.** The pyrylium (1.0 g), ammonium acetate (0.5 g) and ethanol (30 ml) were refluxed for 2 h. Water (60 ml) was added to give the pyridine. Details are given in Table 1.

# General procedure for the preparation of pyridinium salts.

**Method I.** The appropriate amine (1 equiv.), triethylamine (0.3 g), acetic acid (0.2 g) and the pyrylium salt (1.0 g) were stirred in dichloromethane (40 ml) and dried over molecular sieves  $3\text{\AA}$  at 23 °C for 4–72 h. The solvent was removed and diethyl ether (50 ml) added to give the pyridinium salts.

**Method II** As in method I, except that 2 equiv. of primary amine but no triethylamine or acetic acid were used. Details are given in Tables 2–4.

#### 4,6-Diphenyl-2-isopropylidene-2H-pyran (11)

2-Isopropyl-4,6-diphenylpyrylium tetrafluoroborate (4.2 g, 11.6 mmol), potassium *tert*-butoxide (2.6 g, 23.2 mmol) and *tert*-butanol (80 ml) were refluxed for 11 h. Hot water was added slowly at 90 °C until the solution became cloudy. After 12 h at 23 °C the pyran was filtered off and washed with water, to give pyran **11** as red needles (2.1 g, 66%) which decomposed rapidly on standing;  $\nu_{max}$  (CHBr<sub>3</sub>) 2920 m, 1650 m, 1630 s, 1066 m, 1490 s, 1450 s, 1370 m, 1260 m, 1200 m, 1110 s, 1030 w, 840 m, 760 vs; <sup>1</sup>H NMR  $\delta$ (CDCl<sub>3</sub>) 1.70 (s, 3 H), 1.75 (s, 3 H), 6.0 (d, 1 H), 6.3 (d, 1 H), 7.0–7.5 (m, 10 H). <sup>13</sup>C NMR  $\delta$ (CDCl<sub>3</sub>) 17.2 (q), 17.7 (q), 98.0 (d), 113.9 (d).

### General method for preparation of functionalized pyrylium salts from 4,6-diphenyl-2-isopropylidene-2H-pyran (11) (pyryliums 13).

4,6-Diphenyl-2-isopropylidene-2*H*-pyran (1.0 g, 3.65 mmol) and the appropriate electrophile (3.65 mmol) were heated at reflux in anhydrous dichloromethane (20 ml) for 24 h. Diethyl ether (50 ml) was added to give the pyrylium salt. This was dissolved in ethanol, and HBF<sub>4</sub> (1 ml of a 48% solution) was added before heating at reflux for 5 min. Cooling gave the corresponding pyrylium tetrafluoroborates as yellow solids. Pyrylium **13a** was prepared using excess of methyl iodide as solvent and heating at reflux for 24 h. Pyrylium **13b** was prepared from acetyl chloride (4 equiv.) and BF<sub>3</sub>·Et<sub>2</sub>O (0.5 g) by stirring at 23 °C for 4 h (details are given in Table 8).

### Acknowledgment

We thank a referee for comments on this paper.

### REFERENCES

- G. A. Harff, A. Sinnema and B. M. Wepster, *Recl. Trav. Chim. Pays-Bas* 71 (1979).
- 4. (a) C. Roussel, A. Lidén, M. Chanon, J. Metzger and J.

<sup>1.</sup> L. Ernst and A. Mannschreck, Chem. Ber. 110, 3258 (1977).

Y. Ito, Y. Umehara, K. Nakamura, Y. Yamada, T. Matsuura and F. Imashiro, J. Org. Chem. 46, 4359 (1981).

Sandström, J. Am. Chem. Soc. 98, 2847 (1976); (b) A. Liden, C. Roussel, T. Liljefors, M. Chanon, R. E. Carter, J. Metzger and J. Sandström, J. Am. Chem. Soc. 98, 2853 (1976); (c) B. Blaive, C. Roussel, J. Metzger and J. Sandström, Can. J. Chem. 58, 2212 (1980).

- 5. U. Berg and C. Roussel, J. Am. Chem. Soc. 102, 7848 (1980).
- 6. A. R. Katritzky, Tetrahedron 36, 679 (1980).
- 7. P. P. Hopf and R. J. W. Le Fèvre, J. Chem. Soc. 1989 (1938). 8. A. T. Balaban and C. D. Nenitzescu, Justus Liebigs Ann. Chem. 625, 74 (1959).
- 9. V. G. Kharchenko, S. K. Klimenko, M. N. Berezhnaya and I. Ya. Evtuschenko, Zh. Org. Khim. 10, 1302 (1974).
- 10. M. Siemiatycki and R. Fugnitto, Bull. Soc. Chim. Fr. 538 (1961)
- 11. S. S. Thind, PhD Thesis, University of East Anglia, Norwich (1979).
- 12. A. R. Katritzky, A. M. El-Mowafy, G. Musumarra, K. Sakizadeh, C. Sana-Ullah, S. M. M. El-Shafie and S. S. Thind, *J. Org. Chem*. **46**, 3823 (1981).
- 13. A. T. Balaban, W. Schroth and G. Fischer, Adv. Heterocycl. Chem. 10, 267 (1969).
- 14. G. Fischer and W. Schroth, Z. Chem. 3, 191 (1963). 15. For full details see S. N. Vassilatos, PhD Thesis, University
- of East Anglia, Norwich (1982). 16. I. Mitteil, H. Weber and J. Pant, Arch. Pharm. (Weinheim)
- 313, 307 (1980). 17. H. Weber, J. Pant, M. Liedigk and H. Wunderlich, Chem.
- Ber. 114, 1455 (1981).

- 18. L. M. Jackman and S. Sternhell, Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, 2nd ed. Pergamon Press, Oxford (1969).
- 19. C. Uncuta and A. T. Balaban, Rev. Roum. Chim. 21, 251 (1976).
- 20. A. T. Balaban, C. Uncuta, A. Dinculescu, M. Elian and F. Chiraleu, Tetrahedron Lett. 1153 (1980).
- 21. D. J. Pasto and C. R. Johnson, Organic Structure Determination, p. 207. Prentice-Hall, Englewood Cliffs, NJ (1969).
- 22. J. M. Lloyd, PhD Thesis, University of East Anglia, Norwich (1981).
- 23. A. R. Katritzky, J. M. Lloyd and R. C. Patel, J. Chem. Soc., Perkin Trans. 1 117 (1982).
- 24. A. T. Balaban, A. Dinculescu, G. N. Dorofeenko, G. W. Fischer, A. V. Koblic, V. V. Mezheritskii and W. Schroth, Adv. Heterocycl. Chem. Suppl. 2 (1982).
- 25. A. T. Balaban and W. Wray, Org. Magn. Reson. 9, 16 (1977). 26. A. R. Katritzky, R. T. C. Brownlee and G. Musumarra, Tetrahedron 36, 1643 (1980).
- 27. A. R. Katritzky, J. M. Lloyd and R. C. Patel, Chem. Scr. 18, 256 (1981).
- 28. G. Oszbach, D. Szabó and M. E. Vitai, Acta Chim. Acad. Sci. Hung. 101, 119 (1979).
- 29. W. S. Johnson, J. Am. Chem. Soc. 65, 1317 (1943).

Received 24 September 1982; accepted (revised) 3 March 1983