Selective Reactions in Polyethylene Glycol. Hydrogenation of Acetylenes by NaBH₄–PdCl₂ in Polyethylene Glycol–Methylene Dichloride

Nobutaka Suzuki,*a Tsuneaki Tsukanaka,a Tateo Nomoto,b Yasuo Ayaguchi,a and Yasuji Izawa a Department of Industrial Chemistry, Faculty of Education, Mie University, Tsu, Mie 514, Japan

The NaBH₄-PdCl₂-polyethylene glycol-CH₂Cl₂ system has been found to be effective for the hydrogenation of acetylenic triple bonds to the corresponding *cis*-alkenes.

The properties of polyethylene glycol (PEG) make it an excellent substitute for crown ethers in many reactions, and its use as a co-solvent has been reported.^{1,2} We have now found that selective hydrogenation of acetylenic triple bonds takes place with NaBH₄-PdCl₂ in PEG-CH₂Cl₂ systems,^{3,4} providing the first example of the hydrogenation of acetylenes using NaBH₄ (Scheme 1).

A solution of diphenylacetylene (1a), phenylacetylene (1b), or the unconjugated ester methyl hex-3-ynoate⁵ (1c) (10 mmol l⁻¹) either in PEG 200 (1 mol l⁻¹; dried azeotropically with benzene) diluted with dry CH₂Cl₂ to 25 ml, or in EtOH (25 ml) alone, was added to solid PdCl₂ (final conc. 0.94 mmol l⁻¹) and NaBH₄ (200 mmol l⁻¹). The resulting clear solution was stirred at 10 °C (1 atm). Samples were withdrawn at intervals and, for the reactions involving PEG, washed with water. The products were identified by g.l.c. comparison with authentic

$$R^{1}C = CR^{2} \xrightarrow{i} R^{1} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C = C \xrightarrow{R^{2}} \begin{bmatrix} R^{1} \\ + \\ H \end{bmatrix} C =$$

 $\begin{array}{l} \boldsymbol{a};\, R^1 = \,R^2 = Ph \\ \boldsymbol{b};\, R^1 = \,Ph,\, R^2 = \,H \\ \boldsymbol{c};\, R^1 = \,Et,\, R^2 = \,CH_2CO_2Me \end{array}$

Scheme 1. i, NaBH₄-PdCl₂ in PEG-CH₂Cl₂.

samples.† As a comparison 10% Pd/C was used instead of PdCl₂ in the PEG-CH₂Cl₂ system. The results are in Table 1.

With PdCl₂-PEG, the starting materials (1) were consumed completely in an hour. The acetylenes (1a) and (1c) gave the cis-alkenes (2a) and (2c) as the major products, and only minor yields of the saturated compounds (4a) and (4c). At the most, only traces of the trans-alkenes (3a) and (3c) were formed. Reactions were faster with PEG, and the PEG-PdCl₂ combination led to higher selectivity for formation of (2) and (4). The alcoholic products (5)—(7) were not produced from (1c) with the PdCl₂ system, in contrast with Santaniello's results with NaBH₄-PEG systems.^{2b} When NaBH₄ was dissolved in PEG-CH₂Cl₂ and the solution left for >2 h before mixing with the substrate (1c) and PdCl2, the main reaction was hydrogenolysis of the esters. These results can be explained by the formation of the reagent $NaBH_n(OR)_{4-n}$; ^{21),6} PdCl₂ seems to suppress hydrogenolysis of (1)—(4) to the alcoholic compounds. PdCl₂ was more effective than Pd/C with respect to both rate and selectivity. Hydrogenation of phenylacetylene

EtC=CCH₂CH₂OH EtCH=CHCH₂CH₂OH
(5) (6), cis or trans

Me[CH₂]₅OH MeO₂CC=CCO₂Me
(7) (8)

† (2a, b), (3a), (4a—c), and (5)—(7) were commercially available. (2c) and (3d) were prepared as a 10:1 mixture of *cis-trans*-isomers by esterification of commercially available acids, and were identified by n.m.r. comparison with the corresponding *cis-*alcohol (6).

Table 1. Hydrogenation of acetylenes (1) with NaBH₄-PdCl₂-PEG-CH₂Cl₂ at 10 °C.

		N. D	Catalyst	mmol l-1	l 1 11 - 6	% Con-	Tr: /		% Yielde		
Acetylene (10 mmol l ⁻¹)	Solventa	NaBH ₄ / mmol l ⁻¹	PdCl ₂	Pd/C	mol l ⁻¹ of PEG 200	sumption of (1)	Time/ min	(2)	(3)	(4)	(2)/(4)
(1a)	Α	200	0.94	ь	1.0	100	30	91	te	9	10.1
(24)	Ā	200	b		1.0	0	60	$n.d.^d$	n.d.	n.d.	f
	Α	200	0.94	_		60	120	75	n.d.	25	3.0
	A B B	200		0.94	1.0	1 g	180	66	n.d.	33	2.0
	В	200	0.94	0.04	_	40g	30	85	t	15 10	5.7
	В	200		0.94		4g	120	90	t	10	9.0
(1b)	Α	80	0.94		1.0	100	10	77		8	9.6
` '	Α	80	_		1.0	7g	60	t		n.d.	
	Ą	80	0.94			40g	180	100		n.d.	4.5
	A	80	0.04	0.94	1.0	100	360	81	_	18 12	4.5
	B B	80 80	0.94	0.94	_	100 100	30 110	52 25		7	4.3 3.6
	ь	80	_	0.94		100	110	23		,	3.0
(1c)	Α	80	0.94		1.0	100	60	86	t	7	12.3
	A	50	0.94	_	1.0	100	180	72	t.	6	12.0
	Α	80			1.0	58	360	14	n.d.	n.d.	
		00	0.04			98 95	23 h 360	21 73	n.d. 2	n.d. 4	18.3
	Α	80	0.94			100	23 h	72	3	5	14.4
	Α	80	_	0.94	1.0	70	480	20	t	t	
	2 %	00		0,51	1.0	100	23 h	38	12	2	19.0
	В	80	0.94		_	94	63	38	8	t	
	-	0.0		0.04		100	120	24	8	t,	_
	В	80	_	0.94		99	43	53	12 26	n.d.	
	Α	80h	0.94		1.0	100 100	135 15	41 15	26 n.đ.	n.d. t	_
	A	ou-	0.74		1.0	100	1.5	13	11.4.		

^a A: CH₂Cl₂; B: EtOH. ^b Not employed. ^c Conversion yields based on the consumption of (1). ^d n.d.: not detected. ^e t: trace. ^f No data. ^g Incomplete reaction. ^h NaBH₄-PEG-CH₂Cl₂ was added to PdCl₂ + (1c) after it had been left for 2 h at 10 °C.

(1b) under similar conditions gave similar results, except, of course, for the *cis-trans*-isomerisation.

Both the selectivity for formation of (2) and (4) and the yields were much improved, compared with our previous results for catalytic hydrogenation using the similar $PdCl_2-PEG-H_2$ system [(1a): (2)/(4) = 3.55].¹

The conjugated ester dimethyl acetylenedicarboxylate (8) gave irreproducible results; various ratios of *cis*- and *trans*-alkenes together various amounts of the saturated ester were obtained.⁷

The PdCl₂ apparently dissolved completely in the PEG used, but it is not clear whether or not Pd-black was generated.⁸

There have been a few reports on the hydrogenation of conjugated olefinic lactones⁹ and esters.¹⁰ Brown *et al.* reported the catalytic hydrogenation of alkenes by hydrogen generated from NaBH₄ in the presence of a mineral acid.¹¹ However, the mechanism seems to be different from that for the present system, which contained no acid.

LiAlH₄ is well known to reduce triple bonds in tetrahydrofuran or diglyme to give the corresponding *trans*-alkenes, ¹² but the present system has the advantages of faster rates and higher selectivity, together with the easier handling of NaBH₄ than LiAlH₄. Also *cis*-alkenes are obtained free from the *trans*-isomers.

Received, 24th January 1983; Com. 104

References

1 N. Suzuki, Y. Ayaguchi, and Y. Izawa, Bull. Chem. Soc. Jpn., 1982, 55, 3349; N. Suzuki, Y. Ayaguchi, K. Shimazu,

- T. Ito, and Y. Izawa, in A.C.S. Symposium Series, 'Crown Ethers and Phase Transfer Catalysis in Polymer Science,' eds. C. E. Carraher and L. Mathias, Plenum Press, New York, 1982; *Bull. Chem. Soc. Jpn.*, 1983, **56**, 304.
- 2 (a) E. Santaniello, A. Manzocchi, and P. Sozzani, *Tetrahedron Lett.*, 1979, 4581; E. Santaniello, P. Ferraboschi, and P. Sozzani, *J. Org. Chem.*, 1981, 46, 4584; (c) K. Sukata, *J. Synth. Org. Chem. Jpn.*, 1981, 39, 443.
- 3 Effects of a trace of Pb²⁺ on the reduction of α-bromoketones by NaBH₄ have been found; T. Goto and Y. Kishi, J. Chem. Soc. Jpn., 1962, 83, 1135; T. Kondo, H. Kondo, and T. Goto, ibid., 1970, 91, 470.
 4 (a) T. Satoh, N. Mitsuo, M. Nishiki, K. Nanba, and S.
- 4 (a) T. Satoh, N. Mitsuo, M. Nishiki, K. Nanba, and S. Suzuki, Chem. Lett., 1981, 1029; (b) T. Satoh, N. Mitsuo, M. Nishiki, Y. Inoue, and Y. Ooi, Chem. Pharm. Bull., 1981, 29, 1443; M. Nishiki, H. Miyataka, Y. Niino, N. Mitsuo, and T. Satoh, Tetrahedron Lett., 1982, 23, 193.
- 5 K. E. Schulte and W. Engelhardt, Arch. Pharm., 1954, 287, 495.
- 6 A. Hajós, 'Complex Hydride and Related Reducing Agents in Organic Synthesis,' Elsevier, Amsterdam, 1979, p. 61.
- 7 N. Suzuki, unpublished work.
- 8 T. W. Russell and D. M. Duncan, J. Org. Chem., 1974, 39, 3050.
- D. Satoh and T. Hashimoto, Chem. Pharm. Bull., 1976, 24, 1950.
- 10 S. B. Kadin, J. Org. Chem., 1966, 31, 620.
- 11 H. C. Brown, K. Sivasankaran, and C. A. Brown, J. Org. Chem., 1963, 28, 214.
- E.g., L. H. Slaugh, Tetrahedron, 1966, 22, 1741; E. J. Corey,
 J. A. Katzenellenbogen, and G. H. Posner, J. Am. Chem. Soc., 1967, 89, 4245; B. B. Molloy and K. L. Hauser, Chem. Commun., 1968, 1017; A. Claesson, Acta Chem. Scand., Ser. B, 1975, 29, 609; M. Hojo, R. Masuda, and S. Takagi, Synthesis, 1978, 284.