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ABSTRACT: Kinases represent one of the most intensively pursued groups of targets in modern-day drug discovery. Often it is 
desirable to achieve selective inhibition of the kinase of interest over the remaining ~500 kinases in the human kinome. This is 
especially true when inhibitors are intended to be used to study the biology of the target of interest. We present a pipeline of open-
source software that analyzes public domain data to repurpose compounds that have been used in previous kinase inhibitor 
development projects. We define the dual-specificity tyrosine-regulated kinase 1A (DYRK1A) as the kinase of interest, and by 
addition of a single methyl group to the chosen starting point we remove glycogen synthase kinase β (GSK3β) and cyclin-dependent 
kinase (CDK) inhibition. Thus, in an efficient manner we repurpose a GSK3β/CDK chemotype to deliver 8b, a highly selective 
DYRK1A inhibitor. 

KEYWORDS. DYRK1A, polypharmacology, chemoinformatics, selectivity.

Introduction
In recent years clinical successes have demonstrated the large 
potential of kinase inhibitors to become approved drugs.1 
However, achieving the desired selectivity profile remains a 
significant challenge. A number of general methods to gain 
selectivity have been documented, such as targeting the non-
conserved, inactive DFG-out (Type II) conformation of the 
kinase,2 allosteric-site directed (Type III) inhibition3 or 
compounds that access a non-conserved pocket behind the 
gatekeeper residue (Type I1/2).4 Thus far, the majority of FDA-
approved kinase inhibitors are found to bind in a conventional 
Type I, ATP competitive mode.  
Kinase profiling data contains both on- and off-target data for 
compounds often from the same chemical class, derived from 
the same data source. Routine assessment of off-target activity 
facilitates the design of a desired selectivity profile, in order to 
minimize off-target-related side effects. With the availability of 
large kinase screening panels various large scale sets of 
homogenous screening data for many compounds against many 
kinases have been reported. These include significant kinase 
datasets from Anastassiadis et al.,5 Davis et al.,2 Metz et al.,6 as 

well as the screening data derived from the Published Kinase 
Inhibitor Sets 1 and 2 (PKIS/PKIS2).7,8,9  Many of these 
compound sets are comprised of molecules in the realms of 
drug-like space, originating from pharmaceutical industry drug 
discovery programs. These compounds and associated data 
provide opportunities for repurposing kinase inhibitors for 
targets of current interest.  
The ChEMBL database10 holds records for over 1.3 million 
compounds, with around 10 million compound bioactivity 
measurements derived from published structure-activity 
relationship studies and compound library screening studies. An 
effective data-mining strategy is essential to utilise this 
information. The Konstanz Information Miner (KNIME®) is an 
open source data analytics platform that can be used to mine 
ChEMBL using pre-made workflows.11 ChEMBL KNIME® 
nodes and the NN-Activity Pairs workflow were developed by 
workers at ChEMBL-EBI to highlight the polypharmacology 
profiles of similar compounds within a cluster (nearest 
neighbours).  Differences in the polypharmacology profiles of 
nearest neighbours can be interrogated to identify chemical 
transformations that lead to better selectivity.  The principles of 
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the NN-Activity Pairs workflow is shown in Figure 1 (a 
schematic of the workflow is available in supplementary 
information Figure SI-1).

Input chemotype 
of interest

Search nearest 
neighbours (NN) 

in ChEMBL

Rank and Filter 
NN

Retrieve kinase 
bioactivity data 

for NN

Analyse activity 
cliffs 

Figure 1. Principles of workflow used to mine kinase profiling data. 
The workflow was implemented in KNIME® using the ‘NN 
Activity Pairs’ workflow to mine ChEMBL.

In the case where the binding mode of the series is known, the 
position of the chemical transformation that has led to an 
improvement in selectivity can be valuable in the design of 
selective inhibitors.  We illustrate the value of this approach in 
the context of a target of current interest, dual-specificity 
tyrosine-regulated kinase 1A (DYRK1A).  We successfully 
remove two key off-targets by utilizing the KNIME® workflow.
DYRK1A is of interest for inhibitor development due to its 
purported roles in the development and progression of 
neurodegenerative disorders such as Alzheimer’s Disease 
(AD),12 Huntington’s Disease (HD) and Parkinson’s Disease 
(PD).13,14,15,16 The DYRK1A gene is located on the Down’s 
syndrome critical region of chromosome 21, consequently, 
individuals with Down’s syndrome express elevated levels of 
DYRK1A protein.17 Microduplication of the DYRK1A gene 
resulted in dysmorphic and intellectual features characteristic of 
a Down’s syndrome phenotype, supporting the hypothesis that 
DYRK1A represents a novel target for the treatment of Down’s 
syndrome.18 Increased tau phosphorylation is observed in 
trisomy19,20 and Down’s syndrome is associated with early-
onset AD, underscoring a genetic link between DYRK1A, AD 
and Down’s syndrome.21,22,23,24,25

Several DYRK1A inhibitors have been developed and 
summarized in recent reviews.12,26 Although many are reported 
as potent DYRK1A inhibitors, the majority of inhibitors have 
not had their kinome-wide selectivity profiles reported; those 
that have inhibit other members of the CMGC group27 of 
kinases. Given the lack of reported DYRK1A inhibitors 
progressing into and beyond clinical trials, there remains a need 
to develop high quality chemical matter which can be used for 
detailed biological study.28  Investigation of neurodevelopment 
or neurodegeneration requires a CNS penetrant inhibitor, 
capable of exerting an on-target effect in vivo. Two of the most 
advanced DYRK1A inhibitors so far published are L4129 and 
EHT 5372,30 which exhibit good potency and kinome-wide 
selectivity. However, both possess potent off-target activity at 
other CMGC kinases. L41 inhibits CLKs and GSK3β,29 a kinase 
for which DYRK1A serves as a priming kinase, and which 
regulates many of the same signalling pathways as DYRK1A.31  
Another CMGC kinase family that is often inhibited by 

DYRK1A inhibitors is the cyclin-dependent kinases (CDKs).32  
Despite the availability of structural data, it has been difficult to 
gain DYRK1A selectivity against CLKs, GSK3β and the 
CDKs, while optimizing DYRK1A inhibitory activity.  
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Figure 2. Known DYRK1A inhibitors that also inhibit CMGC 
kinases, including GSK3s and CDKs.

Results and Discussion
Data mining identified a pyrazolo[1,5-b]pyridazine starting 
point
Inspection of publicly available kinase profiling data led to the 
identification of a cluster of kinase inhibitors based on the 
pyrazolo[1,5-b]pyridazine core with the potential to become a 
novel and drug-like DYRK1A template.7-9 The pyrazolo[1,5-
b]pyridazines were attractive starting points in terms of drug-
like properties, DYRK1A binding affinity and kinome-wide 
selectivity.  However, the series originated from former 
GSK3β33 and CDK inhibitor programs.34 Selectively removing 
inhibition of these two kinases, while maintaining DYRK1A 
binding affinity and the overall kinome-wide selectivity profile, 
was envisaged as a way to afford a selective DYRK1A tool 
compound.  
The NN-Activity Pairs KNIME® workflow was used to mine 
ChEMBL to highlight the polypharmacology profiles of nearest 
neighbours.  Inspection of the Kinase Activity Profile histogram 
(supplementary information, Figure SI-2) for the pyrazolo[1,5-
b]pyridazines revealed a number of matched-molecular pairs 
(MMPs) and chemical transformations that led to significant 
decreases in inhibitory activity against GSK3β and CDK2 
(Figure 3).
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Figure 3. Activity cliffs identified rapidly from NN-Activity Pairs 
KNIME® workflow.  Data from ChEMBL.10
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Chemistry
An advantage of using publicly available profiling data as a 
starting point for inhibitor discovery is that information 
regarding synthetic routes has usually already been published.  
Following the published procedure,33,34 the aminated pyridazine 
2 was formed in excellent yield after reaction of pyridazine 1 
with hydroxylamine-O-sulfonic acid (HOSA).  Subsequent 
[3+2] cycloaddition between 2 and butyne-2-one afforded the 
pyrazolo[1,5-b]pyridazine 3 in average yield.  DMF/DMA 
condensation furnished the corresponding enamine 4 in 
excellent yield.  Conversion of 4 to the corresponding 
pyrimidine was slow under conventional heating at elevated 
temperatures, taking up to 48 hours for the formation of the 
desired product to occur (Scheme 1).
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Scheme 1. Reagents and conditions: (i) hydroxylamine-O-
sulfonic acid, KHCO3, KI, H2O, 70 °C, 1.5 h, 94%; (ii) butyne-
2-one, KOH, CH2Cl2, rt, 16 h, 60%; (iii) DMF-DMA, 100 °C, 
16 h, 91%; (iv) phenyl guanidines, 2-methoxyethanol, 110 °C, 
16-48 h, 13-37%.

One disadvantage of the literature synthesis was that the 
preparation of each analogue required the respective phenyl 
guanidine to be synthesised first and in most cases the synthesis 
of the phenyl guanidine was low yielding.  Phenyl guanidines 
were prepared using concentrated nitric acid and cyanamide 
from the corresponding aniline (Scheme 2).33,34

H2N
R

N
H

R

H2N

NH

HNO3

(i)

Scheme 2. Reagents and conditions: (i) cyanamide (50 wt.% in 
H2O), HNO3, EtOH, 100 °C, 16-48 h, 35-62%.

In an effort to improve the versatility of the synthesis, the 
chloropyrimidine intermediate 5 was prepared.  Nucleophilic 
aromatic substitution with a range of nucleophiles was then 
possible.  Scale-up of 5 was completed in high yield from 4 
(Scheme 3).  
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Scheme 3. Reagents and conditions: (i) urea, sodium, 140 °C, 
10 min, 91%; (ii) phosphorus(V)oxychloride, 110 °C, 3 h, 92%; 
(iii) conditions A: anilines, 2-propanol, 150 °C, 2-16 h, 4-44%; 
conditions B: anilines, 2-propanol, 150 °C, 15-20 min, 
microwave, 43-60%.

Two approaches were taken to install the N-methyl substituent 
onto the aminopyrimidine.  Nucleophilic aromatic substitution 
of 5 with N-methylbenzylamine afforded 6b in 44% yield.  
Alternatively, N-methylation with sodium hydride and 
iodomethane was carried out on late-stage analogues, 8a and 
10a to access 8b and 10b respectively (Scheme 4).
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R = Me 8b 68%
OMe 10b 64%

(i)

Scheme 4. Reagents and conditions: (i) sodium hydride, 
iodomethane, DMF, rt, 2 h. 

Inhibitor Optimization
The MMPs with the most complete dataset were 6a and 6b 
(Figure 3).  The data suggested that N-methylation of the 
aminopyrimidine N-H reduced the inhibitory activity at both 
GSK3β and CDK2 of the pyrazolo[1,5-b]pyridazine series by 2 
log units.  Pyrazolo[1,5-b]pyridazine analogues that were 
inactive against GSK3β and CDKs were of great interest as 
DYRK1A inhibitors.  N-methylation was an attractive strategy 
to pursue for gaining selectivity as the number of hydrogen-
bond donors in the series was reduced simultaneously, which 
could improve permeability and CNS penetration of the series.  
To confirm that N-methylation afforded selectivity against the 
original series off-targets, GSK3β and CDK2, 6a and 6b were 
profiled in a radiometric kinase assay (33PanQinase® Activity 
Assay) provided by Proqinase GMBH.  The assay measured the 
kinase activity of DYRK1A, GSK3β and CDK2 in the presence 
and absence of inhibitors.  Gratifyingly, the selectivity profile 
predicted in KNIME® was confirmed experimentally, with 6b 
displaying selective inhibition of DYRK1A, whereas 6a 
inhibited all three CMGC kinases.

Table 1: CMGC Selectivity of 6a and 6b at 1 µM 
Compound DYRK1Aa GSK3βa CDK2a 
6a 97 76 98
6b 79 13 33

a% inhibition in 33PanQinase® Activity Assay (n=1)
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Several pyrazolo[1,5-b]pyridazines were profiled against 
DYRK1A in a binding-displacement assay (Table 2).  In 
general, analogues possessing meta-substituents on the aniline 
ring exhibited stronger binding affinity for DYRK1A.  Both 
electron-donating (8a and 10a) and electron-withdrawing (11a) 
substituents were well-tolerated in the meta-position.  
Analogues with ortho and para substituents on the aniline ring 
exhibited weaker DYRK1A binding affinity - 7a and 9a 
exhibited approximately 10 fold weaker binding affinity than 
meta analogues 8a and 10a, whilst 12a displayed 20 fold 
weaker binding affinity for DYRK1A than meta analogue 11a. 

Table 2. DYRK1A Binding Affinity of Pyrazolo[1,5-
b]pyridazines

N
N N

N

N

N

H

R

Compound R DYRK1Aa

6a 38

7a 64

8a 7

9a O 137

10a O 12

11a N 5

12a N 103

a16-point IC50 (nM) in TR-FRET-based ligand-binding 
displacement assay (n=1)

Ortho and para-substituted analogues were deprioritized as 
they possessed weaker DYRK1A binding affinity.  The N-
methylated matched pairs of 6a, 8a and 10a were synthesised 
and assayed for DYRK1A binding affinity (Table 3).

Table 3. DYRK1A Binding Affinity of N-methylated 
Pyrazolo[1,5-b]pyridazines

N
N N

N

N

N

Me

R

Compound R DYRK1Aa

6b 186

8b 76

10b O 97

a16-point IC50 (nM) in TR-FRET-based ligand-binding 
displacement assay (n=1)

Despite a reduction in DYRK1A binding affinity by more than 
5 fold for all N-methylated MMPs, the incorporation of an N-
methyl group was tolerated surprisingly well in DYRK1A.  8b 
and 10b both maintained high levels of DYRK1A binding 
affinity (IC50 < 100 nM).  The binding affinities of MMPs 8a 
and 8b were confirmed by surface plasmon resonance (SPR) 
measurements, which gave a KD ± SEM values of 52 ± 4.5 nM 
for 8b and 8.9 ± 2.1 nM for 8a (both n = 2), in good agreement 
with the binding displacement assay (sensograms are available 
in supplementary information Figure SI-3).  
The broader kinome selectivity of 8b was determined by the 
KINOMEscan assay panel (DiscoverX).  Percentage inhibition 
data for CMGC kinases regularly inhibited by DYRK1A 
inhibitors reported in the literature are summarised in Table 4 
(the full dataset is available in the supplementary information).  

Table 4. KINOMEscan Selectivity Profiling of 8b
Kinase Compound 8b
DYRK1A 65
DYRK1B 0
DYRK2 19
CLK1 59
CLK2 59
CLK3 6
CDK2 12
GSK3β 4
S Score (40) 0.01

a % inhibition at 1 µM inhibitor concentration determined in 
competition binding assay (DiscoverX, n=1).

8b exhibited good kinome-wide selectivity, with a Selectivity 
Score (S-Score (40)) of 0.01. The successful removal of CDK2 
and GSK3β activity with the addition of the N-methyl group 
was consistent with previous results and selectivity against 
DYRK1B, DYRK2 and CLK3 was also observed. The intrinsic 
solubility of 8b was determined by the ‘shaking flask’ method 
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in PBS buffer at pH 6.8.35  8b was also profiled for metabolic 
stability (HLM, RLM).  These results are displayed in Table 5.

Table 5: Metabolic Stability and Solubility of 8b
Compound HLM RLM Solubility 
8b 75.0 ± 3.1 805.3 ± 21.6 0.01

HLM and RLM (µL/min/mg) determinations mean of n = 2. 
HLM = human liver microsomes; RLM = rat liver microsomes; 
thermodynamic solubility data (mg/mL) derived from single 
experiment at pH 6.8.

8b exhibited a high rate of metabolic turnover in rat liver 
microsomes, which would need to be taken into consideration 
for rodent in vivo studies.  The solubility of 8b was not optimal, 
but was comparable to other DYRK1A tool compounds 
currently in use.  Given the favourable selectivity profile and 
strong binding affinity for DYRK1A, 8b was profiled in a 
MDCK-MDR1 assay to assess whether there were any P-gp or 
permeability issues with the series.

Table 6. MDCK-MDR1 Permeability of 8b
Direction = 
A2B

Direction = 
B2A

Comp
ound

CNS 
MPOa 
score

Mean Papp (10-6 cms-1)b Efflux 
Ratio 
(Mean Papp 
B2A / 
Mean Papp 
A2B)b

8b 4.8 20.9 ± 0.10 20.1 ± 0.90 0.96
aCNS MPO score calculated using CNS MPO KNIME® 
workflow with ChemAxon nodes.  bData generated by Cyprotex 
in MDCK-MDR1 assay.  Permeability coefficient (Papp) 
calculated across cells in direction: A2B (Apical to Basolateral) 
and B2A (Basolateral to Apical). Determinations ± standard 
deviation (mean of n =2).  

The high CNS MPO score36 calculated for 8b correlated with 
good levels of permeability and low P-gp efflux, indicating that 
8b, and analogues derived from the pyrazolo[1,5-b]pyridazine 
series, stand a good chance of delivering compounds capable of 
penetrating the blood-brain-barrier (BBB) and exerting an on-
target effect in vivo.
The co-crystal structure of 6b bound to DYRK1A (PDB 6S1I) 
shows that despite possessing an N-methyl group close to the 
hinge of DYRK1A, 6b is able to adopt a Type I binding mode 
(Figure 4). 

Figure 4. Co-crystal structure of 6b bound to DYRK1A in Type 
I fashion, with N-methyl group orientated towards the hinge of 
DYRK1A and Hydrogen-bonding interactions are depicted 
between the ligand and DYRK1A.

6b bound in a monodentate fashion to the hinge of DYRK1A.  
The pyridine-type nitrogen of the pyrazolo portion of the 
pyrazolo[1,5-b]pyridazine motif supports a long-range water 
network at the back of the kinase pocket.  The non-bridging 
nitrogen belonging to the pyridazine portion of the 
pyrazolo[1,5-b]pyridazine motif serves as a hydrogen-bond 
acceptor (HBA) to the catalytic lysine (Lys188), further 
stabilizing 6b in the ATP-site.  The hinge-binding motif, 
bearing an N-methyl substituent appears to occupy a small 
lipophilic pocket present at the hinge of DYRK1A.
6b and 8b differ only by the addition of a meta-methyl group to 
the phenyl moiety in 8b, and therefore the crystal structure with 
6b serves as a good model for the binding of 8b. The lack of 
literature precedent for the hinge-binding motif and the high-
degree of kinome selectivity exhibited by 8b (S-Score (40) = 
0.01), suggests that this pocket may not be present in the vast 
majority of other kinases.  Targeting this pocket appears to be a 
valid approach to gaining selectivity for DYRK1A.  

Conclusion
While structure-based drug design (SBDD) is a proven method 
for designing selective inhibitors, it remains the case that often, 
chemical modifications that yield selectivity are found 
serendipitously and the rationale for compound selectivity can 
remain unknown. Profiling data already in the public domain 
can serve as a repository for chemical transformations that can 
lead to improved selectivity. Data mining tools such as 
KNIME® can be utilized to extract this information from open-
source databases. The method presented here can enable the 
design of kinase inhibitors with improved selectivity versus off-
targets. This strategy serves as a complimentary method to 
SBDD, helping to rationalize compound selectivity.  
The example of DYRK1A, presented here, shows that a 
chemical modification, which may have been overlooked if 
ligand data was not already available, can lead to more 
selectivity against off-targets. A scaffold which was originally 
developed as a CDK2/4 / GSK3β inhibitor has been repurposed 
into a selective DYRK1A inhibitor using a chemoinformatics 
approach. Favourable selectivity against DYRK1B and CLK3 
has also been achieved in an efficient manner. This novel class 
of DYRK1A inhibitors can serve as a basis for future design of 
CNS-penetrant in vivo optimized molecules.
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BBB: blood-brain barrier; CDK: cyclin dependent kinase; CLK: 
CDC-like kinases; CMGC: Including cyclin-dependent kinases 
(CDKs), mitogen-activated protein kinases (MAP kinases), 
glycogen synthase kinases (GSK) and CDK-like kinases; CNS 
MPO: Central nervous system multi-parameter optimization; 
DYRK: Dual-specificity tyrosine phosphorylation-regulated 
kinase; GSK: Glycogen synthase kinases; HBA: hydrogen bond 
acceptor; HLM: human liver microsomes; MDCK-MDR1: Madin-
Darby canine kidney cells transfected with the human MDR1 gene; 
MMP: matched-molecular pair; PBS: Phosphate-buffered saline; 
PDB: Protein databank; PKIS: published kinase inhibitor set; 
RLM: rat liver microsomes; SBDD: structure-based drug design.
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