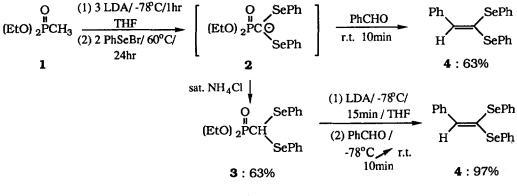
## New Synthetic Route to Ketene Selenoacetals. Reaction of Diethyl 1,1-Bis(phenylseleno)methylphosphonate with Aldehydes and Ketones.


### Won Suk Shin, Kilsung Lee, and Dong Young Oh\*

Department of Chemistry, Korea Advanced Institute of Science and Technology, 373-1, Kusung-Dong, Yusung-Gu, Taejon, 305-701, Korea

# Abstract: Reaction of 1,1-bis(phenylseleno)methylphosphonate with aldehydes gives ketene selenoacetals quantitatively.

In recent years, the development of a large number of selenium-based synthetic methods has made significant contributions to synthetic organic chemistry.<sup>1</sup> Of special value is the application of selenium methodology to the synthesis of natural products, which often requires highly selective and very efficient transformations.<sup>2</sup> However, few studies of potential synthetic utility of ketene selenoacetals have been published up to now,<sup>3</sup> perhaps due to the lack of an easy high-yield preparation of these compounds. To our knowledge, no preparations have been described in the case of ketene selenoacetals by the direct olefination of carbonyl compounds through Wittig or Horner-Emmons reaction.

We report herein a mild and convenient synthetic method for the preparation of ketene selenoacetals from aldehydes and diethyl 1,1-bis(phenylseleno)methylphosphonate(3) as shown in Scheme. The first study for ketene selenoacetals had been done with a one-pot procedure by adding 1eq. PhCHO to the initially formed diethyl 1,1-bis(phenylseleno)methylphosphonate anion(2), which gave 63%  $\beta$ , $\beta$ bis(phenylseleno)styrene(4). This was the same yield that of diethyl 1,1-bis(phenylseleno)methylphosphonate(3) from 1, which means that diethyl 1,1-bis(phenylseleno)methylphosphonate anion(2)



### Scheme

| Entry | Compound                                            | Product <sup>a</sup>                                                    | Yield(%) <sup>b</sup> |
|-------|-----------------------------------------------------|-------------------------------------------------------------------------|-----------------------|
| 1     | PhCHO                                               | PhCH=C(SePh) 2                                                          | 97                    |
| 2     | 4-MeOC <sub>6</sub> H <sub>4</sub> CHO              | 4-MeOC <sub>6</sub> H <sub>4</sub> CH=C(SePh) 2                         | 95                    |
| 3     | 4-NO <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CHO | $4-NO_2C_6H_4CH=C(SePh)_2$                                              | 96                    |
| 4     | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>5</sub> CHO | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>5</sub> CH=C(SePh) <sub>2</sub> | 95                    |
| 5     | PhCH=CHCHO                                          | PhCH=CHCH=C(SePh) 2                                                     | 94                    |
| 6     | Сно                                                 | $\int_{O}$ CH=C(SePh) <sub>2</sub>                                      | 94                    |
| 7     | Ph CH <sub>3</sub>                                  | Ph SePh                                                                 | 79                    |
| 8     |                                                     | SePh                                                                    | 64                    |

 Table.
 Reaction of Diethyl 1,1-Bis(phenylseleno)methylphosphonate

 with Aldehydes and Ketones

<sup>a</sup>Products are obtained by preparative thin-layer chromatography. <sup>b</sup>Isolated yields.

reacted with aldehydes quantitatively.

A typical experimental procedure is as follows: To a stirred solution of LDA(1.0 mmol in 3 ml THF) is added diethyl 1,1-bis(phenylseleno)methylphosphonate (1.0 mmol in 2 ml THF) at -78°C under nitrogen atmosphere. After being stirred for 20 min at the same temperature, benzaldehyde (1.0 mmol in 2 ml THF) is added and the reaction mixture is warmed to room temperature for 20 min. Then, sat. NH<sub>4</sub>Cl solution (5 ml) is added and the mixture is extracted with ether (3 x 20 ml). The combined organic extract is dried (MgSO<sub>4</sub>) and evaporated to give a  $\beta$ , $\beta$ -bis(phenylseleno)styrene, which is purified by short-path column chromatography on silica gel or preparative thin-layer chromatography (ether/hexane = 1/20).

With enolizable ketones, the reaction gives an unexpected result that the major product is not a ketene selenoacetal but 2-phenylselenoketone (Entry 7, 8). This result is similar to the behavior which has been observed in the reaction of  $\alpha$ -phenylselenophosphorane with ketones.<sup>4</sup>

#### REFERENCES

- 1. Nicolaou, K. C.; Petasis, N. A. Selenium in Natural Products Synthesis; CIS, Philadelphia, 1984.
- 2. Denis, J. N.; Krief, A. Tetrahedron Lett. 1982, 3411.
- a) Liotta, D. Organoselenium Chemistry; John Wiley & Sons, New York, 1987; pp 251-256.
  b) Cristau, H. J.; Chabaud, B.; Labaudiniere, R.; Christol, H. J. Org. Chem. 1986, 51, 875.
- 4. Petragnani, N.; Comasseto, J. V.; Brocksom, T. J. J. Organometal. Chem. 1977, 124, 1.

(Received in Japan 31 March 1992)