

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 18 (2008) 414-417

Potent pyrrolidine- and piperidine-based BACE-1 inhibitors

U. Iserloh,^{a,*} Y. Wu,^a J. N. Cumming,^a J. Pan,^a L. Y. Wang,^a A. W. Stamford,^a M. E. Kennedy,^b R. Kuvelkar,^b X. Chen,^b E. M. Parker,^b C. Strickland^a and J. Voigt^a

^aDepartment of Chemical Research, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA ^bDepartment of Neurobiology, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA

> Received 23 July 2007; revised 2 October 2007; accepted 5 October 2007 Available online 6 November 2007

Abstract—Based on lead compound 1 identified from the patent literature, we developed novel patentable BACE-1 inhibitors by introducing a cyclic amine scaffold. Extensive SAR studies on both pyrrolidines and piperidines ultimately led to inhibitor 2f, one of the most potent inhibitors synthesized to date. \bigcirc 2007 Elsevier I td. All rights reserved

© 2007 Elsevier Ltd. All rights reserved.

Alzheimer's disease $(AD)^1$ is a neurodegenerative disorder associated with the accumulation of amyloid plaques comprised of $A\beta_{40,42}$ peptides, along with neurofibrillary tangles in the brain. These peptides arise from cleavage of the amyloid precursor protein (APP) by β -amyloid cleaving enzyme-1 (BACE-1),² hence inhibitors of this aspartyl protease could have therapeutic benefits for the treatment of AD.

In the course of our program to develop patentable novel inhibitors of BACE-1, we investigated conformationally constrained versions of the hydroxyethylamine motif found in many aspartyl protease inhibitors.³ Based on our analysis of the binding mode for the prototypical inhibitor **1** complexed to BACE-1,^{4,5} we decided to integrate the methylene groups flanking the secondary amine into an azetidine, pyrrolidine, or piperidine ring (**2**, Fig. 1). Computational modeling of these ring-constrained amines suggested a similar binding mode as for **1**, while simultaneously rigidifying the conformational flexibility of the R'-side chain.

From a retrosynthetic perspective, we considered the stereoselective synthesis of key amino alcohol **3** via two complementary routes (Fig. 2): formation of bond A would require an Evans aldol coupling between an enantiopure Boc-protected prolinal (or piperidine-2-

Figure 1. Design of azetidine/pyrrolidine/piperidine-based BACE-1 inhibitors 2 (n = 0-2).

Figure 2. Retrosynthetic options toward amino alcohol 3 (Ar = 3,5diffuorophenyl; X_c = Evans oxazolidinone auxiliary).

aldehyde) and an enolate derived from an appropriate acyloxazolidinone (X_c = auxiliary) to give intermediate **4** with three contiguous stereocenters in their required all-*syn* arrangement.^{6,7} Another approach to piperidines through formation of bond B would establish the correct *syn*-stereochemistry of **5** via a Felkin-Anh-controlled addition⁸ of substituted 2-lithiopyridines onto (*S*)-*N*,*N*-(dibenzyl)-3,5-difluorophenylalaninal, followed

Keywords: Alzheimer's disease; β-Secretase; Aspartyl protease inhibitors; Peptidomimetics.

^{*} Corresponding author. Tel.: +1 908 740 7375; fax: +1 908 740 7152; e-mail: ulrich.iserloh@spcorp.com

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.10.116

Scheme 1. Synthesis of BACE-1 inhibitor 2f as a representative example for the Evans aldol route (Ar = 3,5-difluorophenyl; X_c = oxazolidinone auxiliary).

by reduction of the pyridine moiety to the desired piperidine scaffold.

A specific example illustrating the implementation of the Evans aldol route is shown for BACE-1 inhibitor **2f** (Scheme 1), but served well for a host of other cyclic amines described in Table 1. The acyloxazolidinone **8** required for the Aldol coupling was prepared in three steps (96% overall yield) from commercially available 3,5-difluorocinnamic acid **6** based on the literature.⁹ *Boc*-protected 4-benzyloxyprolinal **9** was generated in five straightforward steps¹⁰ from *cis*-4hydroxy-D-proline, and was subsequently coupled with the boron-enolate derived from **8** in 80% isolated yield.

Removal of the oxazolidinone auxiliary from aldol adduct 10^{11} with lithium hydroperoxide provided a β hydroxy acid, which was exposed to diphenylphosphoryl azide (DPPA). Upon Curtius-rearrangement, the incipient isocyanate was readily captured by the hydroxyl group to furnish oxazolidinone 11 in 72% yield (two steps).¹² Hydrolysis with lithium hydroxide gave the desired amino alcohol 12 in 75% yield, and was subsequently coupled to 5-methyl-*N*,*N*-dipropyl-isophthalic acid 13^{4a} in the presence of HOBt/EDCI (or HATU/ HOAt). Final deprotection with trifluoroacetic acid (TFA) furnished BACE-1 inhibitor 2f in 46% (two steps).

An alternate route to piperidine-based BACE-1 inhibitors is shown in Scheme 2, exemplified by the synthesis of compound **2q**. Addition of (*S*)-*N*,*N*-dibenzyl-3,5difluorophenylalaninal **14**¹³ to 2-lithio-4-chloropyridine (regioselectively formed from 4-chloropyridine **15** and *n*-butyllithium in the presence of 2-(dimethylamino) Table 1. BACE-1 binding affinity and cellular activity

Compound	n (ring system)	R′	BACE-1	Cell
			IC_{50}^{a}	IC_{50}^{a}
			(nM)	(nM)
2a	0 (Azetidine)	Н	770	2800
2b	1 (Pyrrolidine)	Н	65	330
2c		OH	89	1450
2d		OMe	187	780
2e		OBn	5	150
2f		OPh	3	165
2g	2 (Piperidine)	Н	130	240
2h		"Pr	70	1200
2i		Bn	14	522
2j		2-MeOPh CH ₂	1350	n/d
2k		3-MeOPh CH ₂	330	n/d
21		4-MeOPh CH ₂	440	2000
2m		$Ph(CH_2)_2$	191	1850
2n		Chx	610	4200
20		ChxCH ₂	630	2000
2p		OAc	2000	3000
2q		OEt	8	106
2r		OBu	7	160
2s		O ⁱ Pr	120	858
2t		OCH2 ^c Pr	6	121
2u		O(CH ₂) ₂ OMe	4	110
2v		O(CH ₂) ₂ NMe ₂	26	482
2w		OCH ₂ Chx	12	567

^a See Refs. 15 and 16 for details of in vitro and cell assays.

ethanol)¹⁴ resulted in selective formation of adduct **16**. Treatment with sodium ethoxide afforded intermediate **17**, which was subsequently deprotected to the amino alcohol and converted to amide **18**. Reduction of the pyridine ring with platinum(IV) oxide/hydrogen in acetic acid gave two isomers **2q** and **19**, which were separated by silica gel chromatography.

The bioactivity of these novel BACE-1 inhibitors was assessed in standard in vitro¹⁵ and cellular¹⁶ assays, with select results shown in Table 1. The effect of ring size was probed in a series of unsubstituted analogs **2a**, **2b**, and **2g** ($\mathbf{R}' = \mathbf{H}$, n = 0-2). While the azetidine only moderate activity **2**a shows (BACE-1 $IC_{50} = 770 \text{ nM}$, cellular $IC_{50} = 2800 \text{ nM}$), the increased molecular volume of pyrrolidine 2b and piperidine 2g greatly improved in vitro activity (BACE-1 $IC_{50} = 65 \text{ nM}$ and 130 nM, respectively). This level of potency compares favorably to the lead inhibitor 1 (BACE-1 IC₅₀ = 8 nM) given that inhibitors **2b** and 2g are not garnering binding affinity from the 3methoxybenzyl substitution.

Scheme 2. Synthesis of BACE-1 inhibitor 2q via addition to *N*,*N*-dibenzyl-3,5-difluorophenylalaninal (Ar = 3,5-difluorophenyl).

Figure 3. Overlay of BACE-1 X-ray structures for 1 (green) and 2f (yellow). Excellent overlap is observed in the S1, S2, and S3 enzyme subsites, and a similar space is accessed in the S2' pocket.

Moreover, additional potency can be regained through appropriate substitution of the pyrrolidine ring as is evident from 4-substituted pyrrolidines 2c-2f. While 4hydroxy and 4-methoxy analogs 2c and 2d exhibit diminished potency relative to its parent, bulkier 4-benzyloxy or 4-phenoxy groups render 2e (BACE-1 IC₅₀ = 5 nM) and 2f (BACE-1 IC₅₀ = 3 nM) equipotent with lead 1.

An overlay of X-ray structures for 1 and 2f (Fig. 3, flap removed for clarity) reveals the expected overlap on the nonprime side (S3 through S1 enzyme subsites) along with the conformational constraint imposed by the pyrrolidine ring.⁵ As a result, the 4-benzyloxy group accesses a space similar to that occupied by the methoxybenzyl moiety present in inhibitor 1.

As for the pyrrolidines, substitution of the piperidine ring can also lead to more potent compounds. While **2h** (R = Pr, 70 nM) and **2i** (R = Bn, 14 nM) show improved in vitro activity relative to **2g**, their increased lipophilicity also reduced the cellular activity. In an effort to explore the SAR around 4-benzylpiperidine 2i, we evaluated methoxybenzyl analogs 2j-2l, phenethyl derivative 2m, as well as the cyclohexyl (2n) and cyclohexylmethyl (2o) variants. However, reduced in vitro and cellular activity was observed in each case. Finally, we decided to explore the SAR of 4-alkoxypiperidines 2p-2w. Gratifyingly, small alkoxy groups such as ethoxy, butoxy, cyclopropylmethoxy, and methoxyethoxy showed single-digit nanomolar IC₅₀ with good cellular activity (cell IC₅₀ = 106–160 nM).

Inspection of the X-ray structure for 4-ethoxypiperidine derivative 2q reveals a 2.4 Å hydrogen-bond from the Thr72 backbone NH of the enzyme flap to the oxygen atom of the 4-ethoxypiperidine, while the S2' pocket remains unoccupied (Fig. 4). Energetically, the favorable interaction of the ether oxygen with the flap NH compensates for the absence of hydrophobic interactions that are harnessed by inhibitors such as 2i with larger substituents in the S2' pocket, thus enabling improved cellular activity. By comparison, the 4-benzyloxypyrrolidine 2e cannot establish a similar hydrogenbonding interaction due to its different trajectory into the S2' enzyme subsite.

BACE-1 inhibitors **2e** and **2f** were further profiled against a panel of relevant human aspartyl proteases (Table 2). Benzyloxypyrrolidine **2e** exhibited low selectivity against cathepsin D ($K_i = 36 \text{ nM}$) and cathepsin E ($K_i = 5 \text{ nM}$), while the phenoxypyrrolidine **2f** was slightly more selective (291 nM and 24 nM, respectively).

In conclusion, we have successfully demonstrated the potential of novel pyrrolidine- and piperidine-based BACE-1 inhibitors. As conformationally constrained versions of hydroxyethylamine-type peptidomimetics, their cyclic amine core allows for targeted substitution into the S2' subsite. In addition, a hydrogen-bonding interaction has been discovered that significantly improved potency for 4-alkoxypiperidines that do not

Figure 4. Close-up view of BACE-1 X-ray structure for **2q** (green) and flap (yellow) in the S2' enzyme subsite. A hydrogen-bond is formed from the flap Thr72 NH to the oxygen atom of the 4-ethoxypiperidine.

Table 2. Detailed profile for novel BACE-1 inhibitors 2e and 2f

Access IC	$2_{\mathbf{n}} \left(\mathbf{R} - \mathbf{O} \mathbf{R} \mathbf{n} \right)$	2f(D - ODh)
Assay, IC_{50}	2e(R - OBII)	2I (K - OPII)
BACE-1 IC ₅₀ (nM)	5	3
BACE-2 IC ₅₀ (nM)	45	54
Cell IC ₅₀ (HEK 293) (nM)	150	165
Cathepsin D K_i (nM)	36	291
Cathepsin E K_i (nM)	5	24
Pepsin K_i (nM)	158	232

exploit binding in the S2' pocket. Further SAR studies will be reported in the subsequent paper in this issue. 17

Acknowledgments

The authors are thankful to Drs. A. Buevich and T.-M. Chan for NMR analyses, and Dr. William Greenlee for continued support. Use of the IMCA-CAT beamline 17-ID at the Advanced Photon Source was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with the Center for Advanced Radiation Sources at the University of Chicago. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38.

References and notes

- General reviews of AD: (a) Nguyen, J.; Yamani, A.; Kiso, Y. *Curr. Pharm. Des.* **2006**, *12*, 4295; (b) Zimmermann, M.; Gardoni, F.; Di Luca, M. *Drugs Aging* **2005**, *22*, 27; (c) Citron, M. *Nat. Rev. Neurosci.* **2004**, *5*, 677.
- BACE-1 is also known as β-secretase. Recent efforts toward BACE-1 inhibitors have been amply reviewed: (a) Durham, T. B.; Shepherd, T. A. *Curr. Opin. Drug Discovery Dev.* **2006**, *9*, 776; (b) Guo, T.; Hobbs, D. W. *Curr. Med. Chem.* **2006**, *13*, 1811; (c) Thompson, L. A.; Bronson, J. J.; Zusi, F. C. *Curr. Pharm. Des.* **2005**, *11*, 3383; (d) Baxter, E. W.; Reitz, A. B. *Ann. Rep. Med. Chem.* **2005**, *40*, 35; (e) Cumming, J. N.; Iserloh, U.; Kennedy, M. E. *Curr. Opin. Drug Discovery Dev.* **2004**, *7*, 536.

- 3. Leung, D.; Abbenante, G.; Fairlie, D. P. J. Med. Chem. 2000, 43, 305.
- (a) Maillaird, M.; Hom, R.; Gailunas, A.; Jagodzinska, B.; Fang, L. Y.; John, V.; Freskos, J. N.; Pulley, S. R.; Beck, J. P.; Tenbrink, R. E. PCT Int. Appl., WO 2002002512, 2002; (b) Freskos, J. N.; Fobian, Y. M.; Benson, T. E.; Bienkowski, M. J.; Brown, D. L.; Emmons, T. L.; Heintz, R.; Laborde, A.; McDonald, J. J.; Mischke, B. V.; Molyneaux, J. M.; Moon, J. B.; Mullins, P. B.; Prince, D. B.; Paddock, D. J.; Tomasselli, A. G.; Winterrowd, G. Bioorg. Med. Chem. Lett. 2007, 17, 73.
- 5. X-ray coordinates for the complex of BACE-1 with inhibitors 1, 2e, 2f, and 2q have been deposited in the Protein Data Bank (http://www.rcsb.org), and can be accessed under PDB ID 2QK5, 2QMD, 2QMF, and 2QP8.
- (a) Shioiri, T.; Hayashi, K.; Hamada, Y. *Tetrahedron* 1993, 49, 1913; (b) Hayashi, K.; Hamada, Y.; Shioiri, T. *Tetrahedron Lett.* 1991, 49, 7287.
- 7. Pettit, G. R.; Burkett, D. D.; Barkoczy, J.; Breneman, G. L.; Pettit, W. E. Synthesis **1996**, 719.
- Reetz, M. T.; Reif, W.; Holdgrun, X. *Heterocycles* 1989, 28, 707.
- (a) Kruse, L. I.; Kaiser, C.; DeWolf, W. E.; Frazee, J. S.; Ross, S. T.; Wawro, J.; Wise, M.; Flaim, K. E.; Sawyer, J. L.; Erickson, R. W.; Ezekiel, M.; Ohlstein, E. H.; Berkowitz, B. A. *J. Med. Chem.* **1987**, *30*, 486; (b) Gage, J. R.; Evans, D. A. Org. Synth. **1989**, *68*, 83.
- Synthesis of 9: BnOH, TsOH; Boc₂O (70%, two steps); BnBr, NaH (71%); LiBH₄ (81%); Swern oxidation (98%); see: Russell, M. G. N.; Beer, M. S.; Stanton, J. A.; Sohal, B.; Mortishire-Smith, R. J.; Castron, J. L. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 2491.
- 11. Stereochemistry for **10** was confirmed by its cyclization to the dihydropyrrolizine, followed by extensive NMR analysis (see Ref. 7).
- 12. Takacs, J. M.; Jaber, M. R.; Vellekoop, A. S. J. Org. Chem. 1998, 63, 2742.
- Prepared from commercially available Boc-3,5-difluorophenylalanine: Reetz, M. T.; Drewes, M. W.; Schwickardi, R. Org. Synth. 1999, 76, 110.
- 14. Choppin, S.; Gros, P.; Fort, Y. Eur. J. Org. Chem. 2001, 603.
- BACE-1 enzymatic inhibition was determined using an APP-derived peptide containing the Swedish mutant: Kennedy, M. E.; Wang, W.; Song, L.; Lee, J.; Zhang, L.; Wong, G.; Wang, L.; Parker, E. Anal. Biochem. 2003, 319, 49.
- 16. Compound IC₅₀s for inhibition of A β_{40} production were determined by incubating HEK-293 cells, stably transfected with the human APP cDNA containing both Swedish and London FAD mutations, with increasing concentrations of BACE-1 inhibitors. A β_{40} levels were measured in the cell culture media using an A β_{1-40} specific ELISA assay: Zhang, L.; Song, L.; Terracina, G.; Liu, Y.; Pramanik, B.; Parker, E. *Biochemistry* **2001**, 40, 5049.
- Iserloh, U.; Pan, J.; Stamford, A. W.; Kennedy, M. E.; Zhang, Q.; Zhang, L.; Parker, E. M.; McHugh, N. A.; Favreau, L.; Strickland, C.; Voigt, J. *Bioorg. Med. Chem. Lett.* 2008, 18, 418.