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a b s t r a c t

A novel stilbazolium salt with flexible chains, trans- [4-[N,N-bis(2-(2-methoxyethoxy)ethyl)amino]
styryl]-N-methylpyridinium tetraphenylborate, was designed, synthesized and fully characterized.
Third-order nonlinear optical properties for the new stilbazolium salt have been explored. The results
show that the novel dye possesses very large values of the real part of the cubic hyperpolarizability c(3),
up to 10�12 esu, and displays maximum two-photon absorption cross sections within the narrow
wavelength range from 950 to 960 nm, while out of the range, it shows a large real part of c(3), which
was determined by two-photon induced fluorescence and open/closed aperture Z-scan measurements
using femtosecond pulse laser in near-infrared range, respectively.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Molecular materials with nonlinear optical (NLO) properties
have been the focus of intense current research. Such materials are
of great scientific and technologic interest not only for applications
as devices as signal processing, ultrafast optical communication,
data storage, optical limiting, logic devices, all-optical switching,
and bioimaging, but also for the fundamental understanding of
how soft matter interacts with light [1e7]. Research advances in
this field depend critically on the development of new materials
with strong NLO response. Therefore significant effort has been
devoted to building novel NLOmolecules. Stilbazolium salts are the
best studied amongst such materials and are particularly attractive
for device applications [8,9].

It was previously studied by Marder’s group that trans-40-
(dimethylamino)-N-methyl-4-stilbazolium tosylate (DAST) ex-
hibits very pronounced bulk quadratic NLO activity [10]. Then
a series of N-aryl stilbazolium salts possessing quadratic NLO
properties were systematically investigated by Coe’s group [11,12].
Recently, efficient TPP (two-photon pumped) lasing has been
x: þ86 551 5107342.
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reported in some p-aminostyrylpyridinium dyes that synthesized
by Prasad’s group [13] and by us [14e17]. Earlier work on NLO
materials has established that increasing the internal charge
transfer and dimensionality of the molecule, extending p-conju-
gated system, and assembling inorganic metal ions with organic
units which will improve the NLO response. Recently, new chro-
mophore design included tuning the molecular bond length
alternation characteristics, introducing electron-rich and
electron-deficient hetero-cyclic bridges were proposed, which act
as auxiliary donors and acceptors, into the molecular skeleton.
Those are different from previous NLO strategies. Very recently,
a new chromophore was designed and synthesized to promote the
advances in the field of molecular materials with NLO activity by
Prasad’s group [18].

In this context, we launched a program aimed in the purpose of
developing soluble dye in high polar solvents, which shows a neg-
ative solvatochromism and the longest excited-state lifetime in
water. Furthermore, it exhibits peak intense two-photon fluo-
rescence-emission within narrow wavelength range, and large
values of the real part of the cubic hyperpolarizability c(3). For
another reason, as we know, organic dyes are extensively used as
the signaling units in chemosensor design because of their intense
absorption and emission properties, which are sensitive to external
inputs [19]. In this work, we introduced two methoxyethoxyethyl
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Fig. 1. Synthesis of 5.

D. Li et al. / Dyes and Pigments 97 (2013) 278e285 279
groups into the molecular skeleton, which may provide the
possibility for acting as an ion probe or sensing to polarity of the
solvents.
Table 1
Crystal data and structure refinement for 5.

Empirical formula C48H55BN2O4

Formula weight 734.75
Temperature 298(2) K
Wavelength 0.71069 �A
Crystal system, space group Monoclinic, P21/n
Unit cell dimensions a ¼ 11.498(5) �A

b ¼ 20.358(5) �A
c ¼ 18.085(5) �A
b ¼ 97.436(5)�

Volume 4198(2) �A3

Z, Calculated density 4, 1.163 mg/m3

Absorption coefficient 0.073 mm�1

F(000) 1576
Crystal size 0.30 � 0.20 � 0.20 mm
Theta range for data collection 1.51e25.00�

Limiting indices �12 � h � 13, �21 � k � 23, �16 � l � 16
Reflections collected/unique 24445/6565 [R(int) ¼ 0.0610]
Completeness to theta ¼ 25.00 88.8%
Absorption correction None
Max. and min. transmission 0.9856 and 0.9785
Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 6565/0/499
Goodness-of-fit on F2 1.031
Final R indices [I > 2sigma(I)] R1 ¼ 0.0604, wR2 ¼ 0.1564
Largest diff. peak and hole 0.233 and �0.202 e. �A�3
2. Experiments

2.1. General

All chemicals used were of analytical grade and the solvents
were purified by conventional methods before use. The 1H-NMR
spectra were performed on Bruker 400 MHz spectrometer with
TMS as the internal standard, coupling constants J are given in
Hertz. Elemental analysis was performed on PerkineElmer 240
instrument. Mass spectra were determined with a Micromass GCT-
MS (ESI source) and MALDI-TOF-MS. IR spectra were recorded on
NEXUS 870 (Nicolet) spectrophotometer in the 400e4000 cm�1

region using a powder sample on a KBr plate.
Single-crystal X-ray diffraction measurements were carried

out on a Bruker Smart 1000 CCD diffractometer equipped with
a graphite crystal monochromator situated in the incident beam for
data collection at room temperature. The determination of unit cell
parameters and data collections were performed with MoKa radi-
ation (l ¼ 0.71073 �A). Unit cell dimensions were obtained with
least-squares refinements, and all structures were solved by direct
methods using SHELXL-97. All non-hydrogen atoms were refined
anisotropically. The hydrogen atoms were added theoretically and
not refined. The final refinement was performed by full-matrix
least-squares methods with anisotropic thermal parameters for
non-hydrogen atoms on F2.

Electronic absorption spectra were obtained on a UV-265 spec-
trophotometer. Fluorescence measurements were performed using
a Hitachi F-7000 fluorescence spectrophotometer.

The TD-DFT {B3LYP[LANL2DZ]} calculations were performed on
the optimized structure. All calculations were performed with the
G03 software, the TDDFT calculation of the lowest 25 singlete
singlet excitation energies were calculated with a basis set com-
posed of 6e31 G(d,p) for C N H O atoms.

For time-resolved fluorescence measurements, the fluorescence
signals were collimated and focused onto the entrance slit of
a monochromator with the output plane equipped with a photo-
multiplier tube (HORIBA HuoroMax-4P). The decays were analyzed
by ‘least-squares’. The quality of the exponential fits was evaluated
by the goodness of fit (c2).
TPEF spectraweremeasuredusing femtosecond laser pulse andTi:
sapphire system (680e1080 nm, 80MHz,140 fs, Chameleon II) as the
light source. Allmeasurementswere carried out at room temperature.

5 was synthesized by the following reactions (shown in Fig. 1).

2.2. Synthesis

2.2.1. 2-Methoxyethyl-4-methylbenzenesulfonate (1)
A solution of 2-methoxyethanol (7.36 mL, 0.10 mol) and a cat-

alytic amount of TBAB (tetra-n-butylammonium bromide) in
dichloromethane was stirred, and subsequently NaOH (aq., 30%,
15 mL) was added. A solution of p-toluenesulfonyl chloride in
dichloromethane was added dropwise. The mixture was stirred for
24 h at room temperature, and then washed with distilled water
three times. The product was dried over Na2SO4, the solvent was
removed under reduced pressure to give a yellow oil. Yield 95%. IR
(KBr, cm�1) selected bands: 3468 (m), 2938 (s), 2889 (s), 1597 (m),
1455 (m), 1357 (s), 1184 (s), 1130 (m), 1101 (m), 1018 (m), 919 (m),



Table 2
Selected bond lengths (�A) and angles (�) of 5.

N2eC13 1.368(4)
N2eC15 1.463(4)
N2eC20 1.455(4)
C6eC7 1.445(4)
C7eC8 1.338(4)
C8eC9 1.442(4)
C13eN2eC15 121.0(3)
C13eN2eC20 121.7(3)
C20eN2eC15 117.3(3)
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821 (m). 1H-NMR (400 MHz, CD3COCD3): 3.20 (s, 3H), 3.48 (t,
J ¼ 4.6 Hz, 2H), 4.08 (t, J ¼ 4.6 Hz, 2H), 7.71 (d, J ¼ 8.4 Hz, 2H), 7.28
(d, J ¼ 8.4 Hz, 2H), 2.36 (s, 3H). Anal. Calc. for C10H14SO4: C, 52.16;
H, 6.13. Found: C, 52.09; H, 6.17.

2.2.2. N,N-Bis(2-(2-methoxyethoxy)ethyl)benzen amine (2)
A solution of N-phenyldiethanolamine (1.81 g, 0.01 mol) in

acetonitrile was slowly dropped into a solution of NaH (0.48 g,
0.02 mol) in acetonitrile, then 1 (4.60 g, 0.02 mol) was added
dropwise. The reaction mixture was stirred and refluxed for 24 h at
85 �C. The suspension was filtered, washed with acetonitrile, and
the filtration containing product was obtained. The product
obtained after evaporation under reduced pressure was purified by
silica gel chromatography column using petroleum/ethylacetate
(6:1 v/v). Light yellow oil product 2 was collected. Yield 70%. IR
(KBr, cm�1) selected bands: 3436 (m), 2921 (s), 1599 (m), 1505 (m),
1459 (m), 1379 (m), 1195 (m), 1117 (m), 752 (m), 686 (m). 1H-NMR
(400 MHz, CD3COCD3): 3.32 (s, 6H), 3.59 (t, J ¼ 5.2 Hz, 8H), 3.50 (t,
J ¼ 4.6 Hz, 4H), 3.65 (t, J ¼ 6 Hz, 4H), 6.75 (d, J ¼ 8.4 Hz, 2H), 7.18 (t,
J ¼ 8.0 Hz, 2H), 6.63 (t, J ¼ 7.2 Hz, 1H). MALDI-TOF:m/z, cal: 297.25,
found: 297.39 (Mþ). Anal. Calc. for C16H27NO4: C, 64.62; H, 9.15; N,
4.71. Found: C, 64.43; H, 9.50; N, 4.87.

2.2.3. 4-(Bis(2-(2-methoxyethoxy)ethyl)amino)benzaldehyde (3)
POCl3 (1.84 g, 0.05 mol) was slowly dropped into a dry 100 mL

flask which contained 0.73 g (0.01 mol) DMF in ice bath. The
Fig. 2. Crystal structure of 5. Hydrog
mixture was stirred vigorously while a solution of 2 (3.00 g,
0.01 mol) in chloroform (25 mL) was added dropwise, the reaction
mixture was stirred and heated under reflux for 15 h at 65 �C and
then cooled to room temperature, and then the residue was
poured into 500 mL ice water slowly. The NaOH solution was
added to adjust the pH of the solution under vigorous stirring.
After the pH in the solution had reached 8.0, the mixture was
extracted by dichloromethane and dried over by Na2SO4. The
product obtained after evaporation under reduced pressure was
purified by silica gel chromatography column using petroleum/
ethylacetate (3:1 v/v). Yellow oil product 3 was collected. Yield
80%. IR (KBr, cm�1) selected bands: 3494 (m), 2877 (s), 2726 (m),
1667 (m), 1596 (s), 1400 (m), 1315 (m), 1170 (m), 1112 (m), 814 (m),
723 (m), 503 (m). 1H-NMR (400MHz, CD3COCD3): 3.30 (s, 6H), 3.71
(t, J ¼ 3.6 Hz, 8H), 3.49 (q, J ¼ 3.8 Hz, 4H), 3.58e3.60 (q, J ¼ 3.8 Hz,
4H), 6.88 (d, J ¼ 9.2 Hz, 2H), 7.70 (d, J ¼ 8.4 Hz, 2H), 9.72 (s, 1H).
MALDI-TOF: m/z, cal: 324.59, found: 324.26 (Mþ). Anal. Calc. for
C17H52NO5: C, 62.75; H, 8.36; N, 4.30. Found: C, 62.64; H, 8.50; N,
4.37.

2.2.4. 1,4-Dimethylpyridinium iodide (4)
1,4-Dimethylpyridinium iodide was synthesized according to

the literature method [20]. White powder product 4 was collected.
Yield 90%. Mp: 155 �C. IR (KBr, cm�1) selected bands: 3451 (m),
3023 (m), 1644 (s), 1517 (m), 1517 (m), 1477 (m), 1289 (s), 1182 (s),
1043 (m), 809 (s), 697 (s), 485 (s). 1H-NMR (400 MHz, d6-DMSO):
2.61 (3H, s), 4.29 (3H, s), 7.97 (2H, d, J ¼ 6.4 Hz), 8.84 (2H, d,
J ¼ 6.4 Hz); Mþ(MS/ESI), 108.48.

2.2.5. Trans-[4-[N,N-bis(2-(2-methoxyethoxy)ethyl)amino]styryl]-
N-methylpyridinium tetraphenylborate (5)

Using a 100 mL one-necked flask fitted with a stirrer and
a condenser, 3.25 g (0.01 mol) of compound 3, 2.35 g (0.01 mol) of
compound 4, and 30mL of absolute ethanol weremixed. Five drops
of piperidine were added to the mixture. Then the solution was
heated to reflux for 4 h. After cooling, 3.46 g (0.01 mol) of sodium
tetraphenylborate was added into the solution. The solution again
en atoms are omitted for clarity.



Fig. 3. Linear absorption (c ¼ 2 � 10�6 mol L�1) spectra of 5 in different solvents.
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was heated to reflux for 10 min. A red solid formed after cooling.
The solution was filtered, and the solid was washed twice with
ethanol and water, respectively. Red solid product 5 was collected.
Mp: 130 �C. FT-IR (KBr, cm�1) v: 707 (m),1175 (s),1523 (m),1585 (s),
1644 (w), 3063 (w), 2981 (w), 2924 (w), 2891 (w). 1H-NMR
(400 MHz, CD3COCD3): 8.36 (d, J ¼ 6.4 Hz, 2H), 7.89 (d, J ¼ 6.8 Hz,
2H), 7.83 (d, J ¼ 16.0 Hz, 1H), 7.58 (d, J ¼ 8.8 Hz, 2H), 7.36 (m, 9H),
7.11 (d, J ¼ 16.4 Hz, 1H), 6.93 (t, J ¼ 7.6 Hz, 9H), 6.86 (d, J ¼ 8.8 Hz,
2H), 6.78 (t, J ¼ 7.2 Hz, 4H), 4.16 (s, 3H), 3.69 (s, 8H), 3.58 (t,
J ¼ 5.2 Hz, 4H), 3.48 (t, J ¼ 4.0 Hz, 4H), 3.29 (s, 6H). 13C-NMR
(100 MHz, CD3COCD3): 164.9, 154.7, 151.5, 144.8, 143.3, 136.9, 131.4,
126.2, 123.2, 117.6, 112.8, 72.7, 72.0, 69.2, 58.9, 51.8, 47.2, 44.1. Mþ

(MS/ESI), 415.33. Anal. Calc. for C48H55BN2O4: C, 78.46; H, 7.54; N,
3.81. Found: C, 78.04; H, 7.50; N, 3.87.
Fig. 4. Molecular orbital e
3. Results and discussion

3.1. Structural features

The single crystals of 5, suitable for the X-ray analysis, were
obtained from the slow evaporation of dichloromethane covered
withmethanol at room temperature. The crystal data collection and
refinement parameters are listed in Table 1. The selected bond
distances and angles are given in Table 2. The structure of 5,
together with the atom numbering scheme is shown in Fig. 2. For
the molecular structure 5, the sum of the three CeNeC angles
taking nitrogen atom as center (C13eN2eC20, 121.7(3)�; C13eN2e

C15, 121.0(3)�; C20eN2eC15, 117.3(3)�) is 360.0�, therefore the
trigonal NC3 is practically coplanar. The least-square plane calcu-
lations show that the dihedral angle between the benzene ring and
pyridine ring is 13.5�, indicating they are nearly coplanar. It can be
seen from Table 2 that all the bond lengths of CeC are located
between the normal C]C double bond (1.32 �A) and CeC single
bond (1.53 �A), which show that there is a highly p-electron delo-
calized system in themolecule, which is the necessary condition for
it bearing a strong NLO active.
3.2. Linear absorption properties and TD-DFT studies

Fig. 3 shows the absorption spectra of 5 (2 mM) in different
solvents. As can be seen from the Fig. 3, by increasing the polarity of
the solvent, the absorption of 5 exhibits a blue shift, from DMF to
water (from 470 to 450 nm, respectively). This behavior is attrib-
uted to a relatively high polar mesomeric form, which is predom-
inant in the ground state. As a result, the hydrogen bond donating
solvents decrease the energy of the ground state, by acting as
proton donors, leading to a blue shift of the absorption band [21].

The linear absorption of 5 in different organic solvents features
one intense absorption band between 450 and 490 nm with the
corresponding molar extinction coefficient (w50,000 M�1 cm�1),
nergy diagram of 5.



Table 3
Excitation energy (E), corresponding wavelength (l), oscillator strength (f) and
major contribution of 5.

E (eV) l (nm) f Composition (C) Character

2.7020 458.8 1.2189 191(H-6)->198(0.59508) ICT

Table 4
Single-photon-related photophysical properties of 5 in different solvents.

Solvent lmax
a ( 3max

b) lmax
c Fd Dv (cm�1)

Benzene 493(4.95) 566 0.0405 2616
Ethyl acetate 479(4.10) 590 0.0549 3927
THF 490(4.90) 597 0.0373 3657
Ethanol 481(5.25) 589 0.0468 3812
Methanol 474(5.20) 592 0.0187 4205
Acetonitrile 469(4.90) 591 0.0124 4401
DMF 472(5.00) 595 0.0289 4379
DMSO 470(6.00) 599 0.0363 4582
H2O 450(4.10) 588 0.0139 5215

a Peak position of the longest absorption band.
b Maximum molar absorbance in 104 mol�1 L cm�1.
c Peak position of SPEF, exited at the absorption maximum.
d Quantum yields determined by using Rh6G as standard.
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which originates from the p/ p* or intramolecular charge transfer
(ICT) transition.

TD-DFT computational studies were performed to elucidate the
electronic structures of the ground state of 5. The schematic rep-
resentation of the molecular orbitals of 5 was exhibited in Fig. 4,
and the energy and composition of ICT are listed in Table 3. The
energy band calculated is at 458.86 nm with oscillator strength
(f ¼ 1.2189). Fig. 4 shows the calculated frontier orbitals of 5, the
energy band was tentatively assigned to ICT. This band mainly
originates from transitions of HOMO-6 to LUMO. Therefore the
initial DFT and TD-DFT calculations provide reasonable explana-
tions for its absorption spectra.

3.3. One-photon induced fluorescence

The single-photon induced emission spectra of 5 (2 mM) in dif-
ferent solvents are illustrated in Fig. 5. It exhibits a weak fluo-
rescence intensity, which is similar to the other the normal
Stilbazolium salts [22,23]. This phenomenon is attributed to that
the excited state of 5 is quenched by the anion. The quenching ef-
ficiency depends on the chemical nature of the anion and the
surroundings [13].

As shown in Fig. 5 (normalized for excitation in benzene and
DMSO), one can see that the fluorescence spectra incline to red shift
as the solvent polarity increase (566 nm in benzene to 599 nm in
DMSO), indicating that the dipole moment of 5 in the excited state
is larger than that in the ground state, and an increase in the po-
larity of the solvent will lower the energy level of the charge
transfer excited state [23].

3.4. Quantum yield determination

The fluorescence quantum yields (F) were determined using
Rh6G as the reference according to the literature method [15].
Quantum yields were corrected as follows:
Fig. 5. One-photon induced fluorescence (c ¼ 2 � 10�6 mol L�1) spectra of 5 in dif-
ferent solvents.
Fs ¼ Fr

�
Arhs

2Ds

Ashr
2Dr

�

where the s and r indices designate the sample and reference
samples, respectively, A is the absorbance at lexc, h is the average
refractive index of the appropriate solution, and D is the integrated
area under the corrected emission spectra [24].

As shown in Table 4, the photophysical properties of 5 show
low quantum yield (<10%). The behavior is due to certain non-
radiative decay mechanisms that may arise as a result of ‘twisted
intramolecular charge geometry’ (TICT) [25], 5 undergoes an
intramolecular transfer of an electron from the donor to the
acceptor in the excited state, which is accompanied by a twist
around the bond joining the donor and acceptor.

3.5. Fluorescence lifetime

To get more insight into the radiative and nonradiative decay
processes, we also conducted time-resolved lifetime experiments.

As shown in Table 5, 5 has a variable excited-state lifetime (50e
300 ps) in various solvents. It’s worth taking amoment to notice the
fact that the fluorescence lifetime in water is the longest. As we
know, the fluorescence lifetime is a relatively long process on the
time scale of molecular events, and during this time, a high energy
fluorophore can undergo a great variety of transformations, ranging
from electron redistribution and geometric alteration to reorgan-
ization of the surrounding molecules and chemical reactions [26].
In many cases, the energy gained as a result of photon absorption is
lost as a nonradiative processes, collectively called quenching [27],
and inevitably leads to the decrease of the fluorescence lifetime.
From Table 5 we can observe that, with increasing polarity of the
solvent, the fluorescence lifetime of 5 decreased, thereby sup-
porting the assumption that because of the nonradiative decay
arised as a result of TICT enhancing the quenching efficiency.

3.6. Two-photon excited fluorescence (TPEF)

Detailed experiments reveal that there is no significant linear
absorption in the spectral range from 600 to 1200 nm, which in-
dicates that there are no molecular energy levels corresponding to
Table 5
Fluorescence lifetime of 5 in different solvents.

Solvent Ethyl acetate THF DMF DMSO Water

s/psa 255 242 171 47 293

a The fitted fluorescence lifetime.



Fig. 6. The two-photon fluorescence spectra of 5 in DMF and DMSO
(c ¼ 1.0 � 10�3 mol L�1). Insert figure: Output fluorescence (Iout) vs. the square of input
laser power (Iin) for 5 excitation carried out at 960 nm, with c ¼ 1.0 � 10�3 mol L�1 in
DMSO.
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an electron transition in the spectral range. Therefore, upon exci-
tation from 600 to 1200 nm, it is impossible to produce single-
photon-excited up-converted fluorescence. The linear depend-
ence on the square of input laser power suggests a two-photon
excitation mechanism at 960 nm for 5 (as an insert figure in Fig. 6).

The two-photon excited fluorescence spectra of 5 were inves-
tigated in two organic solvents (Fig. 6, c¼ 1.0� 10�3 mol L�1), upon
excitation at the optimal wavelength (960 nm), the TPEF spectra of
5 are presented. From Fig. 7 one can see that a two-photon-excited
fluorescence band appears about 30 nm red-shifted as compared to
its single-photon counterpart. This is due to the re-absorption ef-
fect of 5 solution at high concentration [28].

In addition, a majority of the biological samples possess intrinsic
florescence due to molecules which are inherently fluorescent and
absorb in the ultraviolet and visible region [29]. In our case, the
studied 5 can be excited using an IR beam (960 nm) and emit effi-
ciently in the visible region (620 nm) of the spectrum. This is themost
attractive feature of the dye for its utility as a biological probe [30].
Fig. 7. (a) One-photon excited fluorescence spectrum of 5 in DMSO
(c ¼ 2 � 10�6 mol L�1), (b) Two-photon excited fluorescence spectrum of 5 in DMSO
(c ¼ 1.0 � 10�3 mol L�1).
3.7. TPA cross-sections

The two-photon absorption (TPA) cross-section swas measured
by comparing the TPEF (two-photon excited fluorescence) intensity
of the sample with that of a reference compound by the following
equation:

d ¼ dref
Fref
F

cref
c

nref
n

F
Fref

Here, the subscripts ref stands for the reference molecule
(Rh6G). V is the quantum yield, n is the refractive index, F is the
integrated area under the corrected emission spectrum, c is the
concentration of the solution in mol L�1. The dref value of reference
was taken from the literature [31].

As shown in Fig. 8, two-photon absorption cross sections (d) of 5
were measured in the wide wavelength range from 800 to
1000 nm. The maximum values in DMF and DMSO are 517 and
668 GM, respectively. Interestingly, from these data, it can be
observed that the dramatically larger two-photon absorption cross
sections appear in the narrow pathlength about 950e970 nm. This
is very different in comparison to previous results [32e37]. Clearly,
the present structural modifications can result in pronounced dif-
ferences in the absorption cross section. Therefore, it is tentatively
suggested that there are excited-states (S1eSn) distributing in
a much narrow energy band [38].

3.8. TPA coefficient b and c(3)

To further confirm the TPA performances, the TPA coefficient
b and c(3) of 5 were measured by the Z-scan technique [39,40]. Z-
scan is one of the commonly utilized methods to perform c(3)

measurements. The advantage of this method is that both the real
and imaginary parts of c(3) can be determined simultaneously or
consecutively, using the so-called closed-aperture and open-
aperture conditions, respectively. In the present experiments,
a 1 � 10�3 M solution of 5 in DMSO contained in a 1.0 mm path-
length quartz cell for Z-scan measurements was performed sepa-
rately at 920, 960 and 1000 nm wavelengths.

The TPA coefficient b and c(3) calculation method can be
obtained according to literature methods [18,41]. Fig. 9AeC shows
the normalized transmittance plotted as a function of the sample
position (z) measured by using open aperture and closed aperture
Z-scan technique at 920, 960 and 1000 nm, respectively. Table 6
Fig. 8. Two-photon absorption cross sections of 5 in DMF and DMSO vs. excitation
wavelengths of identical energy of 0.500 W.



Fig. 9. A. Normalized open-aperture (left) and closed-aperture (right) Z-scan transmittance of 5 in DMSO (0.001 M) at 920 nm. B. Normalized open-aperture (left) and closed-
aperture (right) Z-scan transmittance of 5 in DMSO (0.001 M) at 960 nm. C. Normalized open-aperture (left) and closed-aperture (right) Z-scan transmittance of 5 in DMSO
(0.001 M) at 1000 nm.
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shows the third-order nonlinearity parameters of 5. From these
data, it can be seen that 5 exhibits a large nonlinear refractive index
coefficient and possesses very large values of the real part of the
cubic hyperpolarizability c(3) at 920 and 1000 nm, respectively.
However, no TPA was observed under the same conditions. The
Table 6
Open- and closed-aperture Z-scan measurement data for the third-order non-
linearity parameters of 5.

Wavelength 920 nm 960 nm 1000 nm
n2 extrapolated to solute

(cm2/W)
4.08 � 10�10 4.29 � 10�10 1.45 � 10�10

Re (c(3)) extrapolated to solute
(esu)

2.26 � 10�12 2.38 � 10�12 8.04 � 10�13

2PA coefficient a2 (cm/GW)
Extrapolated to solute

0.039

Two-photon cross section
s (GM)

1368.61

Im (c(3)) extrapolated to solute
(esu)

1.68 � 10�15
results are in good agreement with those determined by two-
photon-induced fluorescence measurement technique.

4. Conclusions

A new stilbazolium salt with flexible polyether chains, 5, was
designed and synthesized. One-photon absorption and emission
spectra, the excited-state lifetime, two-photon excited fluorescence
behavior have been systematically investigated. The relationships
between the structures and photophysical properties of 5 can be
understood based on both the experimentally and theoretically. It
was found that 5 showed a strong solvent-polarity-dependent
fluorescence in the visible region, and its fluorescence lifetime is
the longest in water compared to those in the other solvents. Fur-
thermore, it exhibits peak intense two-photon fluorescence
emission when excited at the narrow wavelength range of a near-
infrared pulse laser and possesses very large values of the real
part of the cubic hyperpolarizability c(3). The results also suggest
how to use the NLO molecular material under selected different
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wavelengths. The foregoing behavior should establish the founda-
tion for the development of third-order nonlinear optical molecular
materials.
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Appendix A. Supplementary data

Crystallographic data for the structural analysis have been
deposited at the Cambridge Crystallographic Data Center, CCDC-
874010 for 5. Copy of this information may be obtained free of
charge via www: http://www.ccdc.cam.ac.uk or from The Director,
CCDC, 12 Union Road, Cambridge CB221EZ, UK (fax: þ44 1223/
336 033; email: deposite@ccdc.cam.ac.uk). Structural factors are
available on request from the authors. Supporting information can
be found in the web version of this paper. Supplementary data
associated with this article can be found, in the online version, at
http://dx.doi.org/10.1016/j.dyepig.2013.01.001.
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