

A new synthetic approach for novel C-3 substituted β -lactams

Sachin Madan, Renu Arora, P. Venugopalan and S. S. Bari*

Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India

Received 13 March 2000; accepted 23 May 2000

Abstract

An effective route to novel C-3 substituted β -lactams is described. This involves reaction of a β -lactam carbocation equivalent with active aromatic nucleophiles in the presence of a Lewis acid. The stereospecificity of the formation of mono-substituted products may be rationalised on the basis of the SnCl₄ mediated intermediate complex A that reacts via an S_N2 mechanism. © 2000 Elsevier Science Ltd. All rights reserved.

β-Lactams are well-acknowledged structural elements of the widely used penicillins, cephalosporins, thienamycins and other monocyclic β-lactam antibiotics¹ such as monobactams. New routes for the synthesis of monocyclic β-lactams with different appendages at C-3 and C-4 continue to present a challenge for the synthetic organic chemist. More recently, C-3 aryl substituted monocyclic β-lactams have been shown to be potential inhibitors of cholesterol acyl transferase² which is mainly responsible for atherosclerotic coronary heart disease.

Transformations at the C-3 carbon of β -lactams leading to the formation of diverse molecules involving anionic and cationic β -lactam equivalents 1 and 2, respectively (Fig. 1) are an important area of research.³ The potential of the anionic β -lactam equivalent of type 1 has been explored by many groups⁴ for the preparation of different β -lactam synthons.

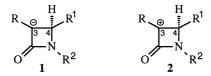


Figure 1.

However, the chemistry involving the cationic β -lactam equivalent 2 is not fully explored. A related study involving S_N2' substitution at C-3 has recently been reported.⁵ Hence, our attention

0040-4039/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: \$0040-4039(00)00865-0

^{*} Corresponding author.

was focused on the use of the cationic β -lactam equivalent type **2** and the exploration of its potential in synthetically useful transformations. We report here a new strategy for the synthesis of novel C-3 substituted β -lactams involving an easily available α -chloro- α -phenylthio- β -lactam **6**. This β -lactam is capable of functioning as a C-3 carbocation equivalent in the presence of a Lewis acid.

Thus, in the presence of the Lewis acid⁷ SnCl₄, β -lactam **6** reacts with a number of active aromatic nucleophiles to produce a variety of substituted β -lactams. A number of interesting C-3 monosubstituted as well as disubstituted β -lactams which may not be easily prepared via the classical routes using an acid chloride-imine cycloaddition⁸ approach, are accessible using this strategy (Scheme 1).

β-Lactams 5, suitable for this study, were prepared from potassium phenylthioacetate 3 and appropriate Schiff bases 4 by the reported procedure.⁶ These β-lactams 5 were converted to the corresponding 3-chloro-3-phenylthioazetidin-2-ones 6(a–c) by reacting with SO₂Cl₂.⁹ Initial studies were carried out by reacting 6a with anisole as the nucleophile¹⁰ in the presence of 1 equivalent of SnCl₄ at -78°C. Instead of leading to the formation of the expected monosubstituted product of type 7, surprisingly, the product was found to be a mixture of two compounds. These products, after chromatographic purification, were identified as 3,3-bis(4-methoxyphenyl)-1-(4-methoxyphenyl)-4-phenylazetidin-2-one 8a and 3,3-bis(phenylthio)-1-(4-methoxyphenyl)-4-phenylazetidin-2-one 9a on the basis of their spectroscopic data and by X-ray crystallography. The reaction was found to be general for several active aromatic nucleophiles and the results obtained are summarised in Table 1.

Scheme 1.

Entry	Substrate	Nucleophile	Products ^a of type (% yield) ^b		
			7	8	9
1	6a	C_6H_5 OMe	-	8a (47)	9a (42)
2	6b	C_6H_5 OMe	-	8b (42)	9b (39)
3	6с	C_6H_5 OMe	7c (45)	8c (35)	9c (16)
4	6a	$1,3-C_6H_4(OMe)_2$	-	12a (43)	9a (35)
5	6b	$1,3-C_6H_4(OMe)_2$	-	13b (39)	9b (32)
6	6a	$1,4-C_6H_4(OMe)_2$	-	14a (38)	9a (43)
7	6b	C ₆ H ₅ OH	-	15b (36)	9b (26)

Table 1 Reaction of cationic β-lactam equivalents 6 with various active aromatic nucleophiles using SnCl₄ as Lewis acid

6a

8

 $C_{10}H_7OMe(2)$

 $C_{10}H_7OMe(2)$

7a(48)

11c(42)

9a(29)

9c(20)

Most of the activated aromatic nucleophiles produce the 3,3-disubstituted azetidin-2-ones of type 8, along with varying amounts of 3,3-diphenylthioazetidin-2-ones of type 9. However, it is interesting to note that the monosubstituted products of type 7 were formed along with disubstituted ones in the case of β -lactams 6a and 6c (entries 3, 8 and 9). The spatial juxtaposition of the C-4 hydrogen and nucleophile at C-3 in 7a was assigned trans on the basis of its transformation to the cis- β -lactam (J = 6.2 Hz, C_3 -H and C_4 -H) on stereospecific Raney-nickel desulphurisation. This was further confirmed by the X-ray crystallographic analysis¹² of monosubstituted β-lactam 7a (Fig. 2).

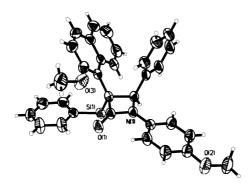


Figure 2. Ortep representation of 7a

The same result was established for 7c via its Raney-nickel desulphurisation leading to the formation of cis- β -lactam 10 (Scheme 2) (J = 5.6 Hz, C_3 -H and C_4 -H). Similarly, 11c also produced the cis- β -lactam on desulphurisation. The reaction proceeds well in CH₂Cl₂ at -78 to -5° C using 1 equivalent of SnCl₄.

⁶c ^aAll new compounds gave satisfactory CHN analysis.

^bYields quoted are for the isolated products characterised by IR, ¹H NMR, ¹³C NMR and MS.

Scheme 2.

It is interesting to note that the monosubstituted products are formed by approach of the nucleophile to the more hindered face of the β -lactam. A possible explanation is that the Lewis acid forms complex A (Scheme 1) thus preventing the approach of the incoming nucleophile from the same side. The reaction probably follows *Path A* and proceeds via an S_N2 mechanism. The intermediate formation of carbocation B would have led to the opposite configuration of β -lactams 7a and 7c. This is supported by the fact that benzene and toluene, being milder nucleophiles, failed to react to give corresponding products.

The possible role of 7 as an intermediate in the formation of the disubstituted products 8 was supported by the conversion of monosubstituted β -lactam 7c, into the disubstituted β -lactam 8c on treatment with anisole, in the presence of SnCl₄.

The formation of **9a** (Scheme 1) was totally unexpected. The ambiphilic behaviour of -SPh as a leaving group (leading to **8**) and at the same time acting as a nucleophile (leading to **9**) is remarkable. The role of SnCl₄ in these processes as a complexing agent may be involved (complex **A**) and **9** may be formed by the approach of the nucleophilic -SPh from the opposite side to the Lewis acid in complex **A**. However, the exact mechanism may be quite complex. Further studies using heterocycles and trimethyl silyl enol ethers as nucleophiles are in progress in our laboratory.

In summary, the reaction of a β -lactam cation equivalent **6** with active aromatic nucleophiles provides access to novel C-3 monocyclic substituted β -lactams. The starting β -lactams are easily available and the reaction procedure, workup and the product purification are also easy to carry out.

Acknowledgements

We thank the Department of Science and Technology, Government of India, for financial support of this work, Grant No. SP/S1/G-29/94 and Professor S. V. Kessar, Senior Scientist, Indian National Science Academy (INSA) for helpful discussions.

References

- (a) Dürckheimer, W.; Blumbach, J.; Lattrell, R.; Scheunemann, K. H. Angew. Chem., Int. Ed. Engl. 1985, 24, 180.
 (b) Chu, D. T. W.; Plattner, J. J.; Katz, L. J. Med. Chem. 1996, 39, 3853. (c) Morin, R. B.; Gorman, M., Eds.; Chemistry and Biology of β-Lactam Antibiotics; Academic Press: New York, 1982.
- 2. Burnett, D. A.; Caplen, M. A.; Davis Jr., H. R.; Burrier, R. E.; Clader, J. W. J. Med. Chem. 1994, 37, 1733.

- 3. (a) Wild, H. In *The Organic Chemistry of β-Lactams*; Georg, G. I., Ed.; VCH: New York, 1992; pp. 53–64. (b) O'Donnell, M. J.; Bennett, W. D. *Tetrahedron* **1988**, *44*, 5389.
- (a) d'Angelo, J.; Pecquet-Dumas, F. *Tetrahedron Lett.* 1983, 24, 1403. (b) Roe, J. M.; Thomas, E. J. *Synlett* 1990, 727. (c) Yamashita, H.; Minami, N.; Sakakibara, K.; Kobayashi, S.; Ohno, M. *Chem. Pharm. Bull.* 1988, 36, 69. [DOC1]
- (a) Bellettini, J. R.; Miller, M. J. J. Org. Chem. 1996, 61, 7959.
 (b) Teng, M.; Miller, M. J. J. Am. Chem. Soc. 1993, 115, 548.
- 6. van der Veen, J. M.; Bari, S. S.; Krishnan, L.; Manhas, M. S.; Bose, A. K. J. Org. Chem. 1989, 54, 5758.
- 7. Arai, K.; Ohara, Y.; Iizumi, T.; Takakuwa, Y. Tetrahedron Lett. 1983, 24, 1531.
- 8. Manhas, M. S.; van der Veen, J. M.; Wagle, D. R.; Hegde, V. R.; Bari, S. S.; Kosarych, Z.; Ghosh, M.; Krishnan, L. *Indian J. Chem.* **1986**, *25B*, 1095.
- 9. Chu, D. T. W. J. Org. Chem. 1983, 48, 3571.
- 10. General procedure for the synthesis of **8a**: To a stirred mixture of 3-chloro-3-phenylthioazetidin-2-one **6a** (80 mg, 0.2 mmol) and anisole (0.02 mL, 0.2 mmol) in dry methylene chloride (10 mL) cooled at -78°C was added SnCl₄ (0.026 mL, 0.22 mmol) rapidly under a nitrogen atmosphere and the resulting solution was stirred for an additional 2 h at the same temperature. The reaction mixture was cooled to rt, quenched with water, extracted with methylene chloride, washed with a 5% NaHCO₃ solution, dried over MgSO₄ and then purified using column chromatography (15% EtOAc-hexanes). The product was recrystallised from CH₂Cl₂/hexanes to furnish colorless crystals of **8a** (44 mg, 47%), mp 136–138°C; FTIR (KBr) 1736 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.54–6.53 (m, 17H), 5.67 (s, 1H), 3.79 (s, 3H), 3.73 (s, 3H), 3.65 (s, 3H); ¹³C NMR (300 MHz, CDCl₃) δ 167.05, 158.80, 158.15, 156.12, 135.18, 133.36, 131.16, 129.74, 129.56, 128.43, 128.39, 128.10, 127.65, 118.78, 114.28, 114.15, 113.25, 71.23, 67.57, 55.43, 55.08; MS (EI): 465.5397 M⁺.
- 11. Ireland, R. E.; Marshall, J. A. J. Org. Chem. 1962, 27, 1615.
- 12. Crystal data for [C₃₃H₂₇NO₃S]: MW = 517.62, monoclinic, $P2_1/c$, a = 10.546(1) Å, b = 21.341(2) Å, c = 12.501(1) Å, $\beta = 108.60(1)^{\circ}$, V = 2666.5(4) Å³, Z = 4, T = 293(2) K, μ (Mo-K α) = 1.57 cm⁻¹, $D_{\text{calcd}} = 1.289$ mg/m³, refinement on F^2 , $R_1 = 0.0407$ and $wR_2 = 0.1115$ for 3655 observed reflections [$I > 2\sigma(I)$].