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Abstract—The synthesis and reactivity of a new IBX analogue (2-iodylphenyl)diphenyl-phosphine oxide 10 is described herein along
with its analysis by single crystal X-ray diffraction.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Hypervalent iodine compounds1 continue to find impor-
tance as oxo- and nitrene-sources for metal catalyzed
aziridinations2 and epoxidations, respectively.3 The prin-
cipal reagents used for these important transformations,
iodosylbenzene (PhI@O) and (tosyliminoiodo)benzene
(PhI@NTs), however, are dominated by strong inter-
molecular secondary bonding interactions, which render
these compounds virtually insoluble in all non-reactive
media.4 This fact inhibits the ability to enhance catalytic
activity, perform careful mechanistic studies, grow crys-
tals for single crystal X-ray diffraction studies, and to
spectroscopically observe intermediates in oxidative
processes.

Previously, we have found success by the incorporation
of ortho-tert-butylsulfonyl groups into these two parent
reagents that introduce intramolecular secondary bond-
ing. The strategic location of a suitable negatively
charged donor atom offers the electrophilic iodine center
the opportunity to coordinate to a proximally located
intramolecular oxygen atom rather than to a negatively
charged donor atom of another molecule that might re-
sult in coordination polymerization. Some examples
from our group (1–3) are shown in Chart 1.5 Whereas
iodosylbenzene is practically insoluble in chloroform, a
0.08 M solution of 1a can be prepared. Similarly, the
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poor solubility of (tosyliminoiodo)benzene is enhanced
50-fold in CHCl3 with the introduction of an ortho-
tert-butylsulfonyl group in 1b. Such reagents have been
used successfully for homogeneous metal-catalyzed azir-
idinations and epoxidations.

More recently, this approach of integrating donor
groups into hypervalent iodine compounds has led to
the successful development of practical replacements
for the synthetically useful oxidant IBX (1-hydroxy-
1,2-benziodoxol-3(1H)-one-1-oxide), namely the IBX-
amides 4,6 IBX-esters 5,7 and IBX-sulfonamides and
sulfonate esters 6 (E = NH or O).8 Like 1–3, these
reagents exhibit improved solubility compared to their
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simpler unsubstituted analogues. Polymer supported
IBX-analogues have also been reported.9

The importance of secondary bonding interactions with
regard to polycoordinated iodine chemistry has also
been proven in developing chiral hypervalent iodine
oxidants,10 for directing the self-assembly of amino acid
derived benziodoxoles,11 and for isolating novel com-
plexes of diphenyl-k3-iodanes with crown ethers.12

Given this recent excitement for these novel iodyl species
as safe alternatives to IBX, we wish to report our work
in which the ortho-tert-butylsulfonyl group of 1a and 2
are replaced by the diphenylphosphoryl unit as a source
of intramolecular secondary bonding. Herein, we report
the preparation and characterization of a new potential
IBX analogue (2-iodylphenyl)diphenylphosphine oxide,
10.
2. Results and discussion

The requisite precursor to the title compounds, (2-iodo-
phenyl)diphenylphosphine oxide, 8, has been prepared
by ortho-directed lithiation of Ph3P@O followed by
reaction with elemental iodine.13 The maintenance of
low temperatures (�25 �C) over an extended period of
time (72 h) during the lithiation step, however, made
the two step process shown in Scheme 1 more attractive.
(2-Bromophenyl)diphenylphosphine 7 was first prepared
by using the method of Tunney and Stille14 (62%), and
then converted to 8 by metal–halogen exchange and sub-
sequent reaction with iodine (71%).

Oxidation of 8 to a fully characterized iodosylbenzene 9
that could be compared to iodosylbenzene 1a proved to
be a challenging task. Subjecting 8 to the conventional
protocol for the preparation of iodosylarenes, namely,
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Scheme 1. Synthesis of 9 and 10.
treatment with peracetic acid followed by aqueous
NaOH,15 yielded a mixture of unreacted 8 and triphe-
nylphosphine oxide. An alternative method involving
initial reaction of 8 with chlorine gas to generate ArICl2
(Ar = 2-Ph2P(O)C6H4), followed by hydrolysis with
base,16 was unsuccessful due to failure to obtain the
ArICl2 intermediate. It was found, however, that if the
material produced from the action of peracetic acid on
8 was dissolved in CHCl3 and washed with cold H2O
until the odor of acetic acid was eliminated, evaporation
of the chloroform followed by trituration with ether
would give a product consistent with 9.17 Elemental
analysis of this white solid from two different prepara-
tions matched the expected composition along with a
fractional amount of CHCl3 (0.86). 1H NMR analysis
indicated a downfield shift of the signal for the proton
ortho to the iodine atom from d 8.01 in 8 to d 8.78 in
9, consistent with what is observed for other hypervalent
iodine compounds. Analysis by 31P NMR spectroscopy
gave a correspondingly downfield shift from d 33.7 in 8
to d 38.4 in 9.

Attempts to crystallize the putative iodosylbenzene
9 from a mixture of chloroform and benzene yielded
X-ray diffraction quality single crystals. Analysis of the
data, however, revealed the identity of the material as
the iodyl derivative 10Æ2H2O (Fig. 1). As the precursor
iodobenzene 8 was highly crystalline, an X-ray diffrac-
tion was also performed on this substance to allow com-
parisons to 10 (Fig. 2).

Several structural features of 10 merit comment, in par-
ticular, the features that differ from those found in the
Figure 1. X-ray crystal structure of iodylarene 10. Selected distances

[Å] and angles [�]: I1–O3 1.789(12), I1–O2 1.818(10), I1–O1 2.603(11),

I1–C1 2.153(15), P1–O1 1.498(11), P(1)–C(1) 1.808(16), I1� � �O2 0 2.564;

C1–I1–O3 94.1(6), O3–I1–O2 103.7(6), C1–I1–O2 93.2(6), O(1)–I(1)–

O(3) 167.9(5).



Figure 2. Single crystal X-ray structure of 8. Selected distances [Å] and

angles [�]: I1–C1 2.115(6), P1–O1 1.474(4), P1–C2 1.811(5); O1–P1–C2

114.7(7).
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structural analyses of 2 and 8. First, as anticipated, there
is a close contact of the phosphoryl oxygen atom with
the iodine atom. This I� � �O3 distance of 2.612 Å is com-
parable to the value of 2.693(2) Å found in sulfone
derivative 2, and significantly shorter than the I� � �O3
distance of 3.291 Å determined for 8. Intramolecular
secondary bonding in 10 induces a roughly coplanar
geometry for atoms O3, P1, C2, C1, and I1 (mean devia-
tion from best plane 0.12 Å). However, careful analysis
of this five atom array reveals that both the I1 and O3
atoms are slightly displaced from either side of the best
plane of the six aromatic carbons of the iodobenzene
ring by �0.29 and +0.27 Å, respectively. Compound 2
shows displacements of the I and O3 atoms from the
same side of the least squares plane of the six aromatic
carbons of the iodobenzene ring by +0.39 and
+0.50 Å, respectively. Such minor displacements are
possibly induced by the close C6–H� � �O1 contacts of
2.38 and 2.39 Å that occur in 10 and 2. The I–O1 and
I–O2 bond lengths for 10 are nearly identical to those
determined for 2, as are the bond angles involving the
iodyl unit. One of the two water molecules (O4) within
the lattice of 10 appears to engage in some degree of
hydrogen bonding to O1 of the iodyl unit (hydrogen
atoms of O4 located and refined) with a O1� � �H(O4) dis-
tance of 2.25 Å. By contrast, O1 for 2 is found to partici-
pate in hydrogen bonding to a dichloromethane
molecule found in the crystal (O1� � �H distance of
2.55 Å). The hydrogen atoms of the second molecule
of water in 10 were not located with confidence, leaving
open the possibility of other hydrogen bonding
interactions.

Molecules of 10 are aggregated in the solid state to form
dimers held together by intermolecular I� � �O2 second-
ary bonds (2.57 Å), comparable in length to the shorter
of the two intermolecular I� � �O2 secondary bonds found
in 2. The presence of these two I� � �O secondary bonds in
2 leads to an infinite bifurcated polymeric structure.
While one can consider 10 to be dimeric in the solid
state, as we have chosen to show in Figure 2, close con-
tacts of the iodine atoms with neighboring iodobenzene
ring (but not with the same molecule depicted in Fig. 2)
indicate that there are most likely significant I� � �arene
interactions as well. This interaction is trans to O2 and
the I1–O1 vector is parallel to this aromatic ring placing
the iodine center at a distance of 3.47 Å above this
neighboring plane of carbon atoms. The iodine atom
is not located above the centroid of this ring, and is
nearly above C5 of this ring (3.57 Å). This geometry
places O1 3.76 Å above C3 of the same ring. The crystal
structure of MesINTs (Mes = 2,4,6-Me3C6H2) revealed
a similar I� � �arene interaction with a I� � �centroid dis-
tance of 3.46 Å.18 In summary, the packing diagram of
10 is complex, and the presence of intermolecular
I� � �O secondary bonds, I� � �arene interactions, and
hydrogen bonding makes for a tightly held network
polymer.

The genesis of 10 from efforts to crystallize 9 is most
likely the result of a disproportionation reaction. It is
well known that iodosylbenzenes can undergo dispro-
portionation19 to give an equivalent of the reduced iodo-
benzene and an equivalent of iodylbenzene. This
tendency has been suggested to be more prominent
in substituted compounds.20

A more direct path to the highly stable iodylbenzene 10
was realized by treatment of 8 with aqueous sodium
hypochlorite under phase transfer21 conditions (71%).22

Compound 10 is insoluble in chloroform, acetonitrile,
benzene, and ether.

Preliminary investigations into the oxidation behavior
of 9 and 10 have found them to be active oxidants. Tri-
phenylphosphine is rapidly and quantitatively converted
at room temperature to triphenylphosphine oxide in
d-chloroform in the presence of 9 or 10. Similarly,
methyl p-tolyl sulfide is converted to the corresponding
sulfoxide in moderate yields (41% and 30%, respectively)
after protracted (2 days) exposure to 9 or 10 in d-chloro-
form at room temperature. Thus, the present materials
appear to be less effective than the IBX-ester analogue
5 (R = i-Pr) for selective oxidations.7b An exploration
of further oxidation chemistry of these compounds is
currently underway.
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