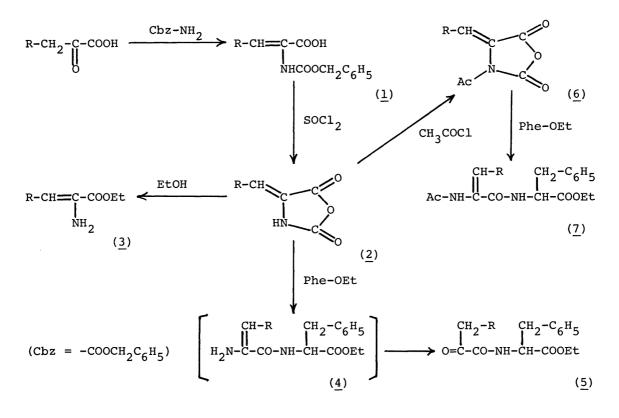
CHEMISTRY LETTERS, pp. 1635-1638, 1981. © The Chemical Society of Japan

THE SYNTHESES OF N-FREE α -DEHYDROAMINO ACID ESTER AND N-ACETYL DEHYDRODIPEPTIDE ESTER FROM N-CARBOXY Q-DEHYDROAMINO ACID ANHYDRIDE

Chung-gi SHIN, * Yasuchika YONEZAWA, and Juji YOSHIMURA[†] Laboratory of Organic Chemistry, Kanagawa University, Kanagawa-ku, Yokohama 221 [†]Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology, Midori-ku, Yokohama 227

N-Carboxy α -dehydroamino acid anhydride, derived from Nbenzyloxycarbonyl a-dehydroamino acid (DHA) and thionyl chloride, was found to be very useful for the synthesis of N-free DHA ester by alcoholysis and N-acetyl dehydrodipeptide ester by coupling was α -amino acid ester.


In previous papers, 1-3) we reported on the useful syntheses of the currently interesting N-benzyloxycarbonyl (Cbz) α -dehydroamino acid (DHA) (1), N-free DHA ester (3), and their dehydropeptides, which were very important constituents or moieties of antibiotic and phytotoxic peptides containing DHA residue. 4-6) So far, compound 3 has been derived only from α,β -unsaturated carboxylic ester via the corresponding α -azidoolefin ester by us.^{2,7,8)}

In the present paper, we wish to report a facile synthesis of several N-carboxy α -dehydroamino acid anhydrides (Δ NCA)⁹ (2), other than N-carboxy α -dehydroalanine anhydride,¹⁰⁾ and the application for the preparations of 3 and N-acyl dehydrodipeptide esters (7).

The starting compound (Z)-1 (\underline{a} ; R=CH₃, \underline{b} ; R=C₂H₅, \underline{c} ; R=n-C₃H₇, \underline{d} ; R=i-C₃H₇, e; $R=C_{6}H_{5}$), prepared by the condensation of α -oxocarboxylic acid with benzyl carbamate as in our earlier works, 1,2 was treated with three molar SOCl₂ (15 ml) in CH_COC1 (30 ml)¹¹⁾ as a solvent at room temperature for 2 hours to give readily the desired 2 as colorless needles in an almost quantitative yield (Table 1). Compared with the common saturated N-carboxy α -amino acid anhydrides (NCA), Δ NCA (2) were found to be surprisingly stable and not to polymerize even after they were allowed to stand at room temperature for several months. Furthermore,

alcoholysis of 2 (30 mmol) with EtOH (15 ml) in the presence of small amount of Et_3N at room temperature for an hour proceeded smoothly to give a colorless oil, identified as ethyl (Z)-2-amino-2-alkenoate (3) in about 74% yield. The compounds 3 thus obtained was in complete agreement with the DHA ester prepared by the reduction of ethyl (Z)-2-azido-2-alkenoates with aluminum-amalgam.²

Generally, it is well-known that the conditions for the preparation of dipeptides by the direct coupling of NCA with α -amino acid ester, except glycine ester, are very delicate because of extreme tendency of NCA for polymerization. In order to examine the reactivity, ANCA was subjected to the coupling with α -amino acid ester. When solution of <u>2</u> (20 mmol) in dry THF (15 ml) were treated with an equimolar phenylalanine ethyl ester (Phe-OEt) at room temperature for half an hour, colorless syrup or crystals, which were identified as Phe-OEt N-protected with alkylethanedioyl group (<u>5</u>), were obtained in about 50% yield (Table 2). The reaction of <u>2</u> with Phe-OEt would to give initially the desired

 \underline{a} ; R=CH₃, \underline{b} ; R=C₂H₅, \underline{c} ; R=n-C₃H₇, \underline{d} ; R=i-C₃H₇, \underline{e} ; R=C₆H₅

Scheme 1

N-free dehydrodipeptides ($\underline{4}$), which are converted to $\underline{5}$ by subsequent hydrolysis, during purification on silica gel columns. Similarly, compound $\underline{2}$ reacted with primary amines such as cyclohexylamine and benzylamine to give the corresponding α -oxocarboxamides in good yields.

On the other hand, ΔNCA (2) were subjected to the acetylation, followed by

	Yield (%)	Mp °C	NMR (DMSO-d ₆) -CH= δ(Hz)	Z	ield (%)	Mp C	NMR (DMSO-d ₆) -CH= δ(Hz)
<u>2a</u>	95	136-138(dec.) ^{a)}	5.80q (7.5)	<u>6a</u>	92	82-85(dec.) ^{c)}	6.47q (7.5)
<u>2b</u>	90	97-98 ^{a)}	5.82t (8.0)	<u>6b</u>	90	55-56(dec.) ^{c)}	6.36t (7.5)
<u>2c</u>	93	116-117 ^{a)}	5.82t (8.0)	<u>6c</u>	93	syrup	6.40t (7.5)
<u>2d</u>	94	91-92 ^{a)}	5.74d (10.0)	<u>6d</u>	90	82-84(dec.) ^{c)}	6.18d (10.0)
<u>2e</u>	93	229-232(dec.) ^{b)}	6.66s	<u>6e</u>	87	105-108(dec.) ^{c)}	7.17s

Table 1. The yields, melting points, and NMR data of ANCA (2 and 6)

a) Colorless needles from cyclohexane. b) Colorless needles from CHCl₃.

c) Colorless needles after successive washing with water and ethyl ether.

	Yield (१)	¹ h nmr -ch ₂ co-	(CDCl ₃) a-H	δ(Hz)		Yield (%)	Mp ^O C	¹ H NMR (CDC1 ₃) -CH= δ (Hz)
5 <u>a</u> 5 <u>b</u> 5 <u>c</u> 5 <u>d</u>	50 ^{a)} 53 ^{a)} 57 ^{a)} 51 ^{a)}	2.85q (7.0), 2.60t (7.0), 2.84t (7.0), 2.74d (7.0),	4.76dt 4.76dt	6.3) (8.2, 6.3) (8.2, 6.3)	6.3) (8.2, 6.3) (8.2, 7b (8.2, 7c 6.3)	95 97 92 94	138-140 ^{c)} 162-163 ^{c)} 137-138 ^{d)} 150-152 ^{d)}	6.38q (7.1) 6.38t (7.0) 6.26t (7.0) 6.10d (10.0)
<u>5e</u>	65 ^{b)}	4.14d (1.1),		6.7)	<u>7e</u>	98	152-154 ^{e)}	6.885

Table 2. The yields, melting points, and NMR data of 5 and 7

a) Colorless syrup. b) Mp 126-127 $^{\rm O}$ C. c) Colorless needles from CCl₄. d) Colorless needles from CCl₄-ethyl acetate. e) Colorless needles from benzene-isopropyl alcohol. the coupling with α -amino acid ester, in order to prepare N-blocked dehydrodipeptides. Compounds <u>2</u> (20 mmol) were treated with CH₃COCl (45 mmol) in dry THF (50 ml) at pH 4.0 with dropwise addition of Et₃N for an hour to give the expected N-acetyl ANCA (6) as colorless needles in fairly good yields (Table 1).

It is noteworthy that compound $\underline{6}$ is comparatively unstable and gradually polymerizes in DMSO solution within a few hours to give resinous substance, while $\underline{6}$ is readily converted in water to the authentic N-acetyl DHA quantitatively.

The subsequent coupling of <u>6</u> (20 mmol) with an equimolar Phe-OEt in dry THF (40 ml) was conducted at room temperature for 40 minutes and colorless needles, identified as N-acetyl (Z)-dehydroaminoacylphenylalanine ethyl esters (<u>7</u>), were obtained in almost quantitative yields (Table 2). The structural and configurational assignment of <u>7e</u> was confirmed by the independent coupling of N-acetyl (Z)-2-dehydrophenylalanine with Phe-OEt.³⁾ The structure of all new compounds (<u>2</u>, <u>5</u>, <u>6</u>, and <u>7</u>) were supported by spectroscopic data and satisfactory results in elemental analysis.

References

- 1) C. Shin, Y. Yonezawa, K. Unoki, and J. Yoshimura, Tetrahedron Lett., 1979, 1049.
- C. Shin, Y. Yonezawa, K. Unoki, and J. Yoshimura, Bull. Chem. Soc. Jpn., 52, 1657 (1979).
- Y. Yonezawa, C. Shin, Y. Ono, and J. Yoshimura, Bull. Chem. Soc. Jpn., 53, 2905 (1980).
- 4) T. Takita, T. Tamura, and H. Taniyama, J. Biochem., 81, 1757 (1977).
- 5) "Bioactive Peptide Produced by Microorganisms", ed by H. Umezawa,T. Takita, and T. Shiba, Kodansha, Tokyo (1978).
- 6) Y. Shimohigashi and N. Izumiya, Yuki Gosei Kyokaishi, 36, 1023 (1978).
- 7) C. Shin, Y. Yonezawa, and J. Yoshimura, Chemistry Lett., 1976, 1063.
- 8) C. Shin, Y. Yonezawa, and J. Yoshimura, Chemistry Lett., 1976, 1095.
- 9) In this paper, the symbol Δ indicates an exocyclic double bond of 5position in oxazolidinedione (2 and 6).
- 10) S. Sakakibara, Bull. Chem. Soc. Jpn., <u>32</u>, 13 (1959).
- ll) N-Carboxy α -dehydroalanine anhydride was first synthesized by the treatment of benzyloxycarbonylaminoacrylic acid with PCl₅ in dry ethyl ether in a 70% yield.¹⁰⁾

(Received July 31, 1981)

1638