## A Highly Enantioselective Lewis Basic Organocatalyst for Reduction of *N*-Aryl Imines with Unprecedented Substrate Spectrum

Zhouyu Wang,<sup>†,‡</sup> Xiaoxia Ye,<sup>†,§</sup> Siyu Wei,<sup>†</sup> Pengcheng Wu,<sup>†</sup> Anjiang Zhang,<sup>†,§</sup> and Jian Sun<sup>\*,†</sup>

Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China, Department of Chemistry, Xihua University, Chengdu, 610039, China, Department of Chemistry, Wenzhou University, Wenzhou, 325035, China, and Graduate School of Chinese Academy of Sciences, China

sunjian@cib.ac.cn

Received January 15, 2006

ABSTRACT



L-Pipecolinic acid derived formamides have been developed as highly efficient and enantioselective Lewis basic organocatalysts for the reduction of *N*-aryl imines with trichlorosilane. Catalyst 4b afforded high isolated yields (up to 98%) and enantioselectivities (up to 96%) under mild conditions with an unprecedented substrate spectrum.

Catalytic enantioselective reduction of imines represents one of the most important methods for preparing chiral amines,<sup>1</sup> a ubiquitous structural motif of natural products, drugs, and agrochemicals. Since the 1970s, considerable effort has been devoted to the development of this transformation, and remarkable progress has been made.<sup>1,3</sup> However, compared with the reduction of alkenes and ketones, relatively limited numbers of highly enantioselective procedures are currently available for the reduction of imines, and the development of efficient catalysts with high enantioselectivity has proven to be much more difficult. In particular, the highly enantioselective catalyst with a satisfactorily broad substrate scope remains elusive. Factors contributing to the difficulty of this transformation include the difference in reactivity among imines containing different nitrogen substituents, the existence of acyclic imines as inseparable mixtures of E/Z

<sup>&</sup>lt;sup>†</sup> Chengdu Institute of Biology.

<sup>&</sup>lt;sup>‡</sup> Xihua University.

<sup>§</sup> Wenzhou University.

<sup>(1) (</sup>a) Blaser, H.-U.; Spindler, F. In *Comprehensive Asymmetric Catalysis*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol. 1, p 247. (b) Ohkuma, T.; Noyori, R. In *Comprehensive Asymmetric Catalysis*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: New York, 2004; Suppl. 1, p 43.

<sup>(2)</sup> For recent reviews, see: (a) Taratov, V. I.; Börner, A. Synlett 2005, 203. (b) Riant, O.; Mostefai, N.; Courmarcel, J. Synthesis 2004, 2943. (c) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029. (d) Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Adv. Synth. Catal. 2003, 345, 103. (e) Carpentier, J. F.; Bette, V. Curr. Org. Chem. 2002, 6, 913. (f) Palmer, M. J.; Wills, M. Tetrahedron: Asymmetry 1999, 10, 2045. (g) Kobayshi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069.

<sup>(3)</sup> For examples, see: (a) Moessner, C.; Bolm, C. Angew. Chem., Int. Ed. 2005, 44, 7564. (b) Nolin, K. A.; Ahn, R. W.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 12462. (c) Trifonova, A.; Diesen, J. S.; Chapman, C. J.; Andersson, P. G. Org. Lett. 2004, 6, 3825. (d) Lipshutz, B. H.; Shimizu, H. Angew. Chem., Int. Ed. 2004, 43, 2228. (e) Kadyrov, R.; Riermeier, T. H. Angew. Chem., Int. Ed. 2003, 42, 5472. (f) Chi, Y.; Zhou, Y.; Zhang, X. J. Org. Chem. 2003, 68, 4120. (g) Xiao, D.; Zhang, X. Angew. Chem., Int. Ed. 2003, 42, 5472. (f) Chi, Y.; Zhou, Y.; Zhang, X. J. Org. Chem. 2003, 68, 4120. (g) Xiao, D.; Zhang, X. Angew. Chem., Int. Ed. 2003, 42, 5472. (f) Chi, Y.; Zhou, Y.; Zhang, X. J. Org. Chem. 2003, 68, 4120. (g) Xiao, D.; Zhang, X. Angew. Chem., Int. Ed. 2003, 42, 5472. (f) Chi, Y.; Zhou, Y.; Zhang, X. J. Org. Chem. 2003, 68, 4120. (g) Xiao, D.; Zhang, X. Angew. Chem., Int. Ed. 2003, 42, 5472. (f) Chi, Y.; Zhou, Y.; Zhang, X. J. Org. Chem. 2003, 68, 4120. (g) Xiao, D.; Zhang, X. Angew. Chem., Int. Ed. 2003, 42, 5472. (f) Chi, Y.; Zhou, Y.; Zhang, X. J. Org. Chem. 2003, 68, 4120. (g) Xiao, D.; Zhang, X. Angew. Chem., Int. Ed. 1998, 37, 1103. (k) Schnider, P.; Koch, G.; Pretot, R.; Wang, G.; Bohnen, F. M.; Krüger, C.; Pfaltz, A. Chem.-Eur. J. 1997, 3, 887. (l) Verdaguer, X.; Lange, U. E. W.; Reding, M. T.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 6784. (m) Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 4916.



Figure 1. Structures of the catalysts reported previously.

isomers, and the ease of interconversion between these two isomers in solution. Therefore, the search for efficient catalysts for highly enantioselective reduction of imines still remains a challenging task.

Currently available chemical catalysts for the enantioselective reduction of imines are mostly limited to chiral transition metal complexes, which often require elevated pressures and/or additives to afford high yields and ee values.<sup>2,3</sup> Recently, some attention has been turned to the development of chiral organocatalysts.<sup>2-6</sup> Effective catalysts reported thus far in the literature include the Lewis bases  $1^{4a}$  and  $2^{4b}$  (Figure 1) for the hydrosilation with trichlorosilane (HSiCl<sub>3</sub>) and the Brønsted acids  $3a^{5a}$  and  $3b^{5b}$  for the transfer hydrogenation with Hantzch esters. High enantioselectivities have been obtained with 2 and 3b in the reduction of a few N-aryl ketimines.<sup>4b,5b</sup> However, the generality of these catalysts is far less than satisfactory.<sup>7</sup> Herein, we report our discovery of the novel Lewis basic organocatalyst 4b (Figure 2) that promotes the reduction of N-aryl ketimines with HSiCl<sub>3</sub> in high yield and excellent enantioselectivity with an unprecedented substrate spectrum.

Recently, great progress has been made in the development of highly enantioselective Lewis basic organocatalysts for the nucleophilic reactions of trichlorosilyl derivatives.<sup>8</sup> We are particularly interested to design novel formamide-based Lewis basic catalysts for the relatively less advanced asymmetric hydrosilation of imines with HSiCl<sub>3</sub> using the

(5) (a) Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M. *Org. Lett.* **2005**, *7*, 3781. (b) Hoffmann, S.; Seayad, A. M.; List, B. *Angew. Chem., Int. Ed.* **2005**, *44*, 7424.



Figure 2. Structures of the catalysts evaluated in this study.

commercially available L-pipecolinic acid as the template. In our initial practice, we observed that compound 4a (Figure 2) exhibited significantly higher reactivity and selectivity than its congener 1a in the reduction of imine 5a with HSiCl<sub>3</sub> (entries 1 and 2, Table 1). This observation prompted us to



<sup>*a*</sup> Unless specified otherwise, reactions were carried out with 10 mol % catalyst and 2.0 equiv of  $HSiCl_3$  on a 0.2 mmol scale in 1.0 mL of solvent for 16 h. <sup>*b*</sup> Isolated yield based on the imine. <sup>*c*</sup> The ee values were determined using chiral HPLC. <sup>*d*</sup> The yield and ee at room temperature reported in ref 4a are 97 and 55%, respectively. <sup>*e*</sup> 5 mol % of catalyst was used.

prepare compounds 4b-d, starting from L-pipecolinic acid and corresponding chiral 2-amino-1,2-diphenylethanols (see Supporting Information), and we examined their catalytic efficiencies (Table 1). In the testing reaction of imine **5a** in the presence of 10 mol % catalyst in CH<sub>2</sub>Cl<sub>2</sub> at 0 °C for 16 h, **4b** afforded the highest yield and ee (97% yield and 94% ee, entry 3).<sup>9</sup> Its diastereomer **4c** gave the same yield and marginally lower ee (entries 3 and 4), indicating that the

<sup>(4) (</sup>a) Iwasaki, F.; Onomura, O.; Mishima, K.; Kanematsu, T.; Maki, T.; Matsumura, Y. *Tetrahedron Lett.* **2001**, *42*, 2525. (b) Malkov, A. V.; Mariani, A.; MacDougall, K. N.; Kocovsky, P. Org. Lett. **2004**, *6*, 2253.

<sup>(6)</sup> For organocatalysis, see leading reviews: (a) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. **2001**, 40, 3726. (b) List, B. Tetrahedron **2002**, 58, 5573. (c) Jarvo, E. R.; Miller, S. J. Tetrahedron **2002**, 58, 2481. (d) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. **2004**, 43, 5138. Two major journals have recently dedicated special issues to organocatalysis. See: (e) Acc. Chem. Res. **2004**, 37 (8), 487. (f) Adv. Synth. Catal. **2004**, 346 (9–10), 1007.

<sup>(7)</sup> At the time of the submission of this manuscript, an analogue of **3** ( $R = SiPh_3$ ) was reported to catalyze the reduction of in situ prepared imines with Hantzch esters in high enantioselectivity with broad substrate spectrum: Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, W. C. *J. Am. Chem. Soc.* **2006**, *128*, 84.

<sup>(8)</sup> For recent reviews, see: (a) Denmark, S. E.; Heemstra, J. R.; Beutner,
G. L. Angew. Chem., Int. Ed. 2005, 44, 4682. (b) Rendler, S.; Oestreich,
M. Synthesis 2005, 1727. (c) Koboyashi, S.; Sugiura, M.; Ogawa, C. Adv.
Synth. Catal. 2004, 346, 1023. (d) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763. (e) Denmark, S. E.; Fu, J. Chem. Commun. 2003, 167. (f) Denmark, S. E.; Stavenger, R. A. Acc. Chem. Res. 2000, 33, 432.

<sup>(9)</sup> The analogous L-proline derivative gave 71% yield and 75% ee under identical conditions.

absolute configuration of  $C_{\beta}$  (see **4b** for labeling) has little impact on the reactivity and selectivity. In contrast, **4d** was found to be much less selective and reactive than **4b** and **4c**, affording only 71% yield and 47% ee under identical conditions (entry 5). Thus an (*S*)-configuration proved to be distinctly preferred for the  $C_{\alpha}$ .

We also examined the influences of different reaction parameters on the performance of **4b** in the reduction of **5a** (entries 6–12, Table 1). Chloroform, dichloroethane, and toluene were all found to afford the same high level of enantioselectivities as dichloromethane (entries 6–8). Lowering the reaction temperature to -20 °C had little effect on the selectivity (entry 10), but the reactivity was significantly decreased. The lowest effective catalyst loading was found to be 10 mol %. The ee value remained at the same level with 5 mol % of **4b**, but the reaction slowed to some extent (entry 11). Further decrease of the catalyst loading to 1 mol % caused an unacceptable loss of reactivity and selectivity (entry 12).

To probe the generality of catalyst 4b, a broad range of *N*-aryl ketimines (5a-s) was reduced with HSiCl<sub>3</sub> under optimal conditions. As illustrated in Table 2, for the aromatic *N*-Ph and *N*-*p*-MeOPh ketimines 5a-i, the desired products 6a-i were obtained in very good yields (82-98%, entries 1-9) with excellent ee values (90-96%). The sterically hindered *N-o*-MeOPh imines **5k** and **5q** (entries 11 and 17) and imines 51-o with electron-withdrawing -Cl and -Br groups on the arene of R<sup>5</sup> (entries 12-15) all reacted well to give high ee values of 87-95% and yields of 75-98%. Furthermore, catalyst 4b also exhibited high enantioselectivities for the challenging aliphatic ketimines 50-r despite that all the imines were used as E/Z isomeric mixtures, affording 87-95% ee values with 75-86% yields (entries 15–18). Additionally, in the presence of catalyst 4b,  $\alpha,\beta$ unsaturated imine 5s (E/Z = 2/1) was chemo- and enantioselectively reduced to afford allylic amine 6s in 81% yield and 87% ee. Overall, the high enantioselectivity of 4b proved to be remarkably general for N-aryl ketimines, which is unprecedented in catalytic asymmetric reduction of imines.

In summary, we have developed a highly efficient Lewis basic organocatalyst (**4b**) for the enantioselective reduction of *N*-aryl imines with trichlorosilane. This catalyst, easily prepared from the commercially available L-pipecolinic acid, promoted the reduction of a broad range of *N*-aryl imines in high yields and excellent ee values under mild conditions. The broad substrate spectrum of this catalyst is unprecedented in asymmetric imine reduction catalysis. The mechanistic

**Table 2.** Asymmetric Reduction of Ketimines 5 with Catalyst $4b^a$ 

|       |                        |                    |                   |      | R⁵               |                  |
|-------|------------------------|--------------------|-------------------|------|------------------|------------------|
|       | $   HSiCl_3, CH_2Cl_2$ |                    |                   |      |                  |                  |
| R⁴ ~  |                        | 10 mol % <b>4b</b> |                   |      | - R4 *           |                  |
|       | 5                      |                    |                   |      | 6                |                  |
| entry | imine                  |                    |                   |      | yield            | ee               |
|       |                        |                    |                   |      | (%) <sup>b</sup> | (%) <sup>c</sup> |
|       |                        |                    | X =               |      |                  |                  |
| 1     |                        | 5a                 | Н                 |      | 97               | 95               |
| 2     | N <sup>_Ph</sup>       | 5b                 | p-CF <sub>3</sub> |      | 85               | 96               |
| 3     | $\sim$                 | 5c                 | $p-NO_2$          |      | 96               | 95               |
| 4     |                        | 5d                 | <i>p</i> -Br      |      | 98               | 95               |
| 5     | X                      | 5e                 | <i>m</i> -Br      |      | 82               | 94               |
| 6     |                        | 5f                 | p-OMe             |      | 95               | 93               |
|       | N <sup>_Ph</sup>       |                    | •                 |      |                  |                  |
| 7     |                        | 5g                 | Н                 |      | 92               | 93               |
| 8     | ſŢŢ,                   | 5h                 | OMe               |      | 91               | 90               |
|       | x                      |                    |                   |      |                  |                  |
| 9     |                        | 5i                 | p-OMe             |      | 98               | 92               |
| 10    |                        | 5j                 | <i>p</i> -Me      |      | 90               | 95               |
| 11    | N TX                   | 5k                 | o-OMe             |      | 92               | 89               |
| 12    | Ĩ.                     | 51                 | o-Cl              |      | 93 <sup>d</sup>  | 90               |
| 13    | Ph >                   | 5m                 | p-Cl              |      | 98               | 93               |
| 14    |                        | 5n                 | p-Br              |      | 91               | 93               |
|       |                        |                    | 1                 | E/Z  |                  |                  |
| 15    | л <del>"</del> †х      | 50                 | <i>p-</i> Br      | 10/1 | 80               | 95               |
| 16    |                        | 5p                 | H                 | 10/1 | 81               | 95               |
| 17    | ()                     | 5a                 | o-OMe             | 8/1  | 75               | 87               |
| • ·   |                        | ~4                 |                   | 0    |                  | υ.               |
| 18    | N <sup>/</sup> "       | 5r                 |                   | 6/1  | 86               | 91               |
| 10    |                        | 51                 |                   | 0/1  | 00               | 71               |
| 19    |                        | 5s                 |                   | 2/1  | 81               | 87               |

<sup>*a*</sup> Unless specified otherwise, reactions were carried out with 2.0 equiv of  $HSiCl_3$  on a 0.2 mmol scale in 1.0 mL of solvent at 0 °C for 16 h. <sup>*b*</sup> Isolated yield based on the imine. <sup>*c*</sup> The ee values were determined using chiral HPLC. <sup>*d*</sup> The reaction time is 48 h.

aspects and the full application scope of this catalytic system are under exploration and will be reported in due course.

**Acknowledgment.** We are grateful for financial support from the Chinese Academy of Sciences (Hundreds of Talents Program) and from the National Science Foundation of China (20402014).

**Supporting Information Available:** Experimental procedures and spectral and analytical data for the products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL060112G