
Tetrahedron Letters 46 (2005) 3311–3313

Tetrahedron
Letters
A new, practical and efficient sulfone-mediated synthesis of
trifluoromethyl ketones from alkyl and alkenyl bromides
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Abstract—We report herein a new and efficient method to prepare trifluoromethyl ketones from the corresponding bromides
through sulfones in good yields.
� 2005 Elsevier Ltd. All rights reserved.
Trifluoromethyl ketones (TFMKs) are an important
family of compounds, which have been shown as potent
inhibitors of a variety of esterases and proteases.1

TFMKs act as transition state analogues of the enzyme
and the inhibition arises by formation of an adduct of
tetrahedral geometry between the serine residue at the
active site of the enzyme with the highly electrophilic
carbonyl moiety.2 The inhibition studies carried out
with these fluorinated derivatives may be therapeutically
significant in different areas, for instance arachidonoyl
ethanolamide (anandamide) hydrolysis inhibitors in
processes involving analgesia, mood, nausea, memory,
etc.,3 and renin or angiotensin-converting enzyme inhibi-
tors in hypertension phenomena.4 Therefore, the devel-
opment of new methodologies for introduction of
trifluoromethylated building blocks for the synthesis of
fluorinated bioactive molecules is highly desirable.

Synthesis of TFMKs has been accomplished by a num-
ber of methods,5 the most recent approaches involving
catalytic aerobic oxidative decarboxylation of a-trifluo-
romethyl-a-hydroxy acids,6 conversion of trifluoroethyl
amines by NBS/DBU treatment,7 Pd-catalyzed cross-
coupling reaction of aryl trifluoroacetates with organo-
boron compounds,8 Ru(II)-catalytic oxidation of
trifluoromethyl carbinols,9 nucleophilic trifluoromethyl-
ation of esters with TMSCF3

10 or Et3GeNa/
C6H5SCF3,

11 reaction of carboxylic acid chlorides with
0040-4039/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.tetlet.2005.03.106

Keywords: Trifluoromethyl ketones; Sulfones; Fluorinated compounds.
* Corresponding author. Tel.: +34 93 4006120; fax: +34 93 2045904;

e-mail: agpqob@iiqab.csic.es
pyridine and trifluoroacetic anhydride,12 or by metalla-
tion of alkyl iodides followed by reaction with a fluoro-
acylating agent.13

In the context of our project aimed at developing new
inhibitors of the antennal esterases of insects,14 we re-
port herein a practical and efficient procedure to prepare
long chain saturated and unsaturated trifluoromethyl
ketones through the corresponding sulfones (Scheme
1). Only one example has been found in the literature
using a similar approach,15 but in this report an over
reduction of the trifluorinated ketone to the mono-
and difluoro analogue was noticed, which makes the
approach impractical for preparative purposes.

In our case, a variety of sulfones (2a–l) were prepared as
possible substrates for the trifluoroacylation reaction.
The sulfones were easily obtained by reaction of the
corresponding bromides16 with sodium phenyl sulfinate
in anhydrous DMF17 in good to excellent yields (Table
1).

It should be noted that for several unsaturated sub-
strates some isomerization of the double bond was
detected, as has been noticed previously in the
preparation of similar substrates even under very mild
conditions.18 Isomerization was minimized (up to 5%
for sulfone 2d, entry 4) by running the reaction at room
temperature, although longer reaction times (48 h) were
generally required except for allylic sulfones (0.5–3 h
reaction). In the presence of a phase transfer catalyst
(TEBA) in benzene–water–acetone19 inversion of the
stereochemistry of sulfone 2g was noticed (Z/E 17/83)
(not shown in Table 1), perhaps because the reaction
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Table 1. New synthesis of trifluoromethyl ketones from sulfones

Entry Bromide (%) Sulfone (%) Acylated sulfone (%) TFMK

Methoda Compound (%)

1 1a, Octyl (—)b 2a (86) 3a (80) A 4a (62)

2 1b, Dodecyl (—)b 2b (85) 3b (75) A 4b (60)

3 1c, 10-Undecenyl (90) 2c (72) 3c (78) A 4c (75)

4 1d, (Z)-11-Hexadecenyl (97)c 2d (78)c 3d (70) A 4d (68)

5 1e, (Z)-3-Hexenyl (86)d 2e (60)d 3e (72) A 4e (54)

B 4e (58)

6 1f, (E)-5-Octenyl (77)e 2f (56)e 3f (72) A 4f (60)

7 1g, (Z)-5-Octenyl (84)f 2g (69)f 3g (72) A 4g (68)

B 4g (73)

8 1h, (Z)-4-Nonenyl (—)b,g 2h (75)g 3h (70) A 4h (70)

9 1i, (E,Z)-2,6-Nonadienyl (76)h 2i (90)h — —

10 1j, Cinnamyl (—)b,i 2j (84)i — —

11 1k, 2-Decynyl (98) 2k (96) — —

12 1l, 3-Phenylpropyl (—)b 21 (73) 3l (77) A 4l (68)

aMethod A: aluminium amalgam in THF–H2O 9:1 at reflux. Method B: SmI2/THF–HMPA at �78 �C.
b The absence of yields means that the compounds were either commercially available or had been previously synthesized in our laboratory.
c Bromide 1d: Z > 99%. Sulfone 2d: Z/E 95/5.
d Bromide 1e: Z > 99%. Sulfone 2e: Z/E 70/30.
e Bromide 1f: Z/E 5/95. Sulfone 2f: Z/E 20/80.
f Bromide 1g: Z/E 95/5. Sulfone 2g: Z/E 90/10.
g Bromide 1h: Z > 99%. Sulfone 2h: Z/E 90/10.
h Bromide 1i: Z/E 90/10. Sulfone 2i: Z/E 90/10.
i Bromide 1j: E > 99%. Sulfone 2j: E > 99%.
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system required heating at 80–85 �C for 24 h for com-
plete conversion.

Assays for the trifluoroacylation of sulfones were carried
out using compound 2a as model. The best conditions
implied the use of 1.4 equiv of n-BuLi at �78 �C fol-
lowed by immediate addition of ethyl trifluoroacetate
(10 equiv).20 Lower amounts (5 equiv) of the trifluoro-
acylating agent led to somewhat lower yields. The reac-
tion mixture was allowed to react for 1 h more at
room temperature to furnish 3a in 80% yield. These con-
ditions provided good yields for long chain saturated
(3a,b,l, entries 1, 2, 12) and unsaturated sulfones (3c–h,
entries 3–8), although allylic (2i,j, entries 9, 10) and
propargylic sulfones (2k, entry 11) did not react and
the starting material was recovered almost quantita-
tively (Table 1). In this context, other trials to obtain tri-
fluoroacyl sulfones 3i–k under different experimental
conditions (higher temperatures, longer reaction times)
and different solvents (THF, THF–HMPA 1:1) failed.
In addition, replacement of ethyl trifluoroacetate by tri-
fluoroacetic anhydride or (trifluoroacetyl)benzotriazole,
a particularly efficient acylating agent for allylic sulf-
ones,21 resulted also futile in our hands.

Removal of the sulfone group is a key reaction in sul-
fone-mediated chemical synthesis. Although in general,
amalgams with Group IA–IIIA metals in alcoholic sol-
vents have been recommended,22 in our case, however,
sodium amalgam in methanol23 afforded a mixture of
products. By contrast, aluminium amalgam in THF–
H2O 9:1 at reflux24 (method A) or SmI2/THF–HMPA25

at �78 �C (method B) were found reliable desulfonyl-
ation reagents to provide the required TFMKs in satis-
factory yields. Remarkably, the processes occurred
leaving the highly electrophilic trifluoroacyl group intact
and in no case phenyl sulfinic acid elimination to event-
ually produce a,b-unsaturated products was detected. In
addition, the stereomeric purity of the unsaturated
TFMKs 4d–h was identical to that of the corresponding
acyl precursors 3d–h.26 In contrast to Kobayashi�s work,
our procedure does not produce any over reduction
product perhaps because the portionwise addition of
the aluminium amalgam prepared26 allowed us a better
control of the reaction process (4 h reaction time vs
30–45 min in Kobayashi�s work). In addition and as
cited, the desulfonylation process can alternatively be car-
ried out by SmI2 treatment with equally good results.26

In summary, we have developed an easy, efficient and
scalable procedure for the synthesis of trifluoromethyl
ketones. In contrast to other methods, the process does
not require special fluorination reagents nor any expen-
sive catalyst, and therefore it can advantageously be
added to other reported methods for the preparation
of this important class of chemicals.
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5. Bégué, J. P.; Bonnet-Delpon, D. Tetrahedron 1991, 47,
3207–3258.

6. Blay, G.; Fernández, I.; Marco-Aleixandre, A.; Monje, B.;
Pedro, J. R.; Ruiz, R. Tetrahedron 2002, 58, 8565–8571.

7. Kim, S.; Kavali, R. Tetrahedron Lett. 2002, 43, 7189–7191.
8. Ryuki, K.; Isao, S.; Akio, Y. Bull. Chem. Soc. Jpn. 2001,

74, 371–376.
9. Kesavan, V.; Bonnet-Delpon, D.; Bégué, J. P.; Srikanth,
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