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Action of a novel pyrrolo[1,2-c][1.3]benzodiazepine
on the viability of Jurkat and neuronal/glial cells
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Abstract—We have designed and synthesized several structural isomers of anthramycin (heterocycles 2, 3, 5, 6, and 8) and found
that, in particular, pyrrolobenzodiazepine 8 induces DNA cleavage and formation of small fragments of DNA. The cytotoxic effects
of 8 were manifested with both non-transformed primary neuronal/glial cells and transformed Jurkat cells. The other compounds
did not change the viability either of transformed or of non-transformed cells, and induced DNA cleavage to a lesser extent.
� 2005 Elsevier Ltd. All rights reserved.
Interactions between the drug molecules and the gua-
nine N2 of DNA are becoming important aspects in
the design of new antitumor compounds. Many natural
antibiotics, including anthramycin,1 daunorobicin and
doxorubicin,2 and ecteinascidins,3 are shown to bind
to the N2 of guanine in the minor groove of DNA.
Anthramycin, an antitumor alkylating antibiotic pro-
duced by Streptomyces refuineus, covalently binds to
the N2 amine of the guanine 9 residues through its
C11 position.4 The cytostatic and antitumor effects of
anthramycin and related benzodiazepines are believed
to be due to their selective interaction with DNA,5

which causes inhibition of nucleic acid synthesis,6 and
production of excision-dependent single- and double-
strand breaks in cellular DNA.7 The DNA adduct in-
duced by anthramycin causes only minimal distortion
of the DNA helix and is poorly recognized and, hence,
poorly removed by the repair proteins.

The action of anthramycin on the apoptosis of cancer
cells is not fully understood, but it may be assumed that
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like other DNA-alkylating antibiotics it induces apopto-
sis by a mitochondrial pathway.8

Another aspect of pyrrolobenzodiazepine activity is the
inhibition of molecular interactions between DNA and
transcription factor Sp1.9 Inhibition of DNA binding
activity of Sp1 to the cognate �G–C� box causes neuro-
protection against oxidative stress induced by various
excytotoxic stimuli.10 Because of the many side effects
of anthramycin antibiotics (e.g., nausea, vomiting, diar-
rhea, myelosuppression, and a dose-limiting cardiotox-
icity), there have been numerous attempts to obtain
improved derivatives with enhanced activity or reduced
side effects. Taking into account the potential neuropro-
tective and anti-carcinogenic effects of anthramycin re-
lated benzodiazepines, we investigated the change in
survival of transformed human leukemic Jurkat and
non-transformed neuronal/glial cells, induced by novel
pyrrole, pyrrolobenzazepine, and pyrrolobenzodiaze-
pine derivatives.

The tested heterocycles 2, 3, 5, 6, and 8 were prepared
from a common starting material, namely, (2-nitrophen-
yl)(1-tosyl-1H-pyrrol-2-yl)methanone 111 (Scheme 1).
Compound 1 was reduced by catalytic hydrogenation
over 5% palladium-on-carbon to give the corresponding
amine, which was then detosylated to compound 2 in
aqueous 2 N NaOH. Compound 2 was either further
reduced to 2-(1H-pyrrol-2-yl)methyl)benzenamine 3
with sodium borohydride in refluxing propan-2-ol, or
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Scheme 1. Reagents and conditions: (i) (a) H2, 5% Pd–C, MeOH, rt,

8 h, (b) aq 2 N NaOH, MeOH, reflux, 5 h; (ii) NaBH4, IPA, reflux,

24 h; (iii) CSCl2, toluene, Et3N, rt, 1 h; (iv) AlCl3, MeNO2, rt, 6.5 h;

(v) K2CO3, DMF, rt, 3 h; (vi) CSCl2, toluene, Et3N, �45 �C, 5 min.

Table 1. Effects of 1 lM heterocycles 2, 3, 5, 6 and 8 on the reduction

of MTT in glial/neuronal cells

Additions MTT reduction (O.D. 570 nm)a

Control 0.56 ± 0.08

2 0.65 ± 0.07

3 0.38 ± 0.08

5 0.55 ± 0.09

6 0.62 ± 0.06

8 0.58 ± 0.01

+ NMDA 0.29 ± 0.05

+ NMDA + 2 0.30 ± 0.07

+ NMDA + 3 0.22 ± 0.04

+ NMDA + 5 0.25 ± 0.07

+ NMDA + 6 0.28 ± 0.06

+ NMDA + 8 0.17 ± 0.03

a Cell viability after exposure to 100 lM NMDA. The data are pre-

sented as means ± SEM for triplicate determination.

Table 2. Effects of 1 lM heterocycles 2, 3, 5, 6, and 8 on the reduction

of MTT in Jurkat cells

Additions MTT reduction (O.D. 570 nm)a

Control 0.47 ± 0.05

2 0.39 ± 0.07

3 0.34 ± 0.03

5 0.45 ± 0.07

6 0.41 ± 0.08

8 0.22 ± 0.05

a Cell viability after exposure for 24 h assessed by the MTT tests. The

data are presented as means ± SEM for triplicate determination.
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transformed into the isothiocyanate 4 by reaction with
thiophosgene. Amine 3 was converted into isothiocya-
nate 7 similarly. When 4 was subjected to AlCl3 in nitro-
methane, ring closure via intramolecular electrophilic
substitution between C-3 of the pyrrole ring and isothi-
ocyanate group afforded pyrrolo[3,2-c][1]benzazepine-
10(1H)-one-4(5H)-thione 5. On the other hand, treat-
ment of 4 and 7 with potassium carbonate in DMF
afforded pyrrolo[1,2-c][1.3]benzodiazepines 6 and 8, by
intramolecular nucleophilic addition of the generated
pyrrolyl anion to the isothiocyanate group.12

N-Methyl-DD-aspartate (NMDA) receptor-mediated cell
death is complex, probably involving elements of apop-
tosis in neuronal cells. The cytotoxic effects are mediated
by increased Ca2+ influx through activated NMDA
receptor. Associated with Ca2+ influx is an increase in
reactive oxygen species (ROS) that appears to originate
in the mitochondria. Ca2+ overloading reduces the mem-
brane potential and disrupts electron transport, result-
ing in the increased production of ROS.13 Some types
of DNA-binding drugs through transcription factors
Sp1 inhibit apoptosis and DNA damage in rat cortical
neurons caused by excitotoxic oxidative stress.10 Hence,
the effects of heterocycles 2, 3, 5, 6, and 8 on NMDA-
receptor mediated cell death were examined.14 It was
found that none of the examined compounds have any
protective properties against NMDA-induced excitotox-
icity. In the presence of these compounds, the reduction
rate of MTT did not change (Table 1). Moreover, com-
pound 8 increased cell damage after treatment of cells by
NMDA, suggesting that this compound intensifies
NMDA-dependent excitotoxicity.

Jurkat cells are a human leukemic cell line, which
expresses CD4 clusters and has the ability to produce
several cytokines in response to stimuli. It is a well-
established model for the study of apoptotic death path-
ways of cancer cells.15 Therefore, in the next series of
experiments, Jurkat cells14 were incubated in the pres-
ence of heterocycles 2, 3, 5, 6, and 8 (Table 2). It was
found that MTT uptake was significantly decreased only
in the presence of compound 8, suggesting that this
derivative has anti-proliferative and pro-apoptotic
activity.

We have also analyzed DNA strand breaks in cells treat-
ed with 1 lM each of heterocycles 2, 3, 5, 6, and 8 using
pulsed field gel electrophoresis16 (Fig. 1). The additional
DNA fragments of 3–4 Mb appeared in Jurkat cells fol-
lowing a 20 h treatment only with tricycle 8, suggesting
strongly that this compound induced DNA cleavage.
Apparently, in this case DNA cleavage is initiated by
heterocycle 8mediated inhibition of topoisomerases that
results in provoking poly(ADP)-ribose polymerase acti-
vation and apoptosis. Other compounds cause the form-
ation of DNA fragments to a lesser extent.

The data presented point out that compound 8 causes
cell death in both transformed Jurkat and non-trans-
formed primary neuronal/glial cells, apparently by
inducing damage to DNA. However, the mechanism
of action of this pyrrolobenzodiazepine derivative differs
from anthramycin and other alkylating minor groove
binders, since compound 8 does not contain the imine
or carbinolamine groups that would react with amines
to form covalent bonds. It is suggested that compound



Figure 1. Detection of intracellular DNA cleavage in Jurkat cells

treated with heterocycles 2, 3, 5, 6, and 8. Cells (1 · 106/ml were treated

with 1 lM of each heterocycle 2, 3, 5, 6, and 8 at 37 �C for 20 h. Cells,

prepared as agarose plugs, were lysed and subjected to pulsed field gel

electrophoresis through a 1% agarose gel. C, control; M, size marker

DNA.
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8 induces genotoxicity by stabilizing the DNA helix just
like the sequence-selective pyrrolobenzodiazepine dimer
SJG-136. The latter is unable to interact covalently with
DNA but has significant cytotoxicity in some cell lines.17

Further experiments are needed for the clarification of
the mechanism of action of non-covalent DNA-interac-
tive pyrrolobenzodiazepine derivatives. The results pre-
sented augment the repertoire of compounds that have
pro-apoptotic properties and may be used as a basis
for the design of new non-toxic anti-cancer drugs.
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