

¹H and ¹³C chemical shifts for 2-aryl and 2-N-arylamino benzothiazole derivatives

S. Billeau, F. Chatel, M. Robin,* R. Faure and J.-P. Galy

Laboratoire de Valorisation de la Chimie Fine, UMR CNRS 6178 Symbio, Faculté des Sciences et Techniques de Saint-Jérôme, Université Paul Cézanne, Av. Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France

Received 25 May 2005; accepted 25 July 2005

The ¹H and ¹³C NMR resonances for forty-three 2aryl and 2-N-arylamino benzothiazole derivatives were completely assigned using a concerted application of oneand two-dimensional experiments (DEPT, gs-COSY, gs-HMQC and gs-HMBC). Copyright © 2005 John Wiley & Sons, Ltd.

KEYWORDS: NMR; ¹H NMR; ¹³C NMR; COSY; HMQC; HMBC; 2-aryl benzothiazoles; 2-N-arylamino benzothiazoles

INTRODUCTION

During the last decade, a large number of 2-aryl benzothiazoles (Scheme 1) and 2-N-arylamino benzothiazoles (Scheme 3) have been prepared because of their wide pharmacological potency. In fact, this important class of compounds has interesting anti-inflammatory,¹ antimicrobial,^{2–4} antitumor^{5,6} and neuroprotective properties.⁷ Recently, these compounds were also used as precursors for *in vivo* imaging of β -amyloid plaques,⁸ and for nonlinear optical application.⁹ As a part of our program aimed at developing new heterocyclics bearing a thiazole ring,^{10–13} we report in this paper the complete ¹H and ¹³C NMR chemical shift assignments using one- and two-dimensional NMR techniques, including DEPT, gs-COSY, gs-HMQC and gs-HMBC, for 2-N-arylamino benzothiazole and 2-aryl benzothiazole derivatives.

EXPERIMENTAL

Materials:

General procedures for benzothiazoles formation For 2-aryl benzothiazoles (1-26),¹⁴ typically, the corresponding substituted benzoic acid (10 mmol), 2-amino thiophenol (11 mmol) and PPA (10 g) were heated at 140 °C for 24 h. The resulting mixture was poured into water. The precipitate was collected by filtration, dried and recrystallized from CH₂Cl₂ (yield 80-90%)

For 2-N(-aryl)-6-nitro benzothiazoles (27, 29-32, 34, 36, 38-40, 42),³ a mixture of 2-chloro-6-nitrobenzothiazole (10 mmol) and phenol (3 g) was heated at 100 °C under nitrogen. When the chloro compound was dissolved in phenol, the corresponding substituted anilines (11 mmol) were introduced into the reaction mixture. The mixture was stirred at 80 °C for 4 h, cooled to room temperature and poured into water. The precipitate was then filtered and recrystallized from ethanol (yield 50-70%).

2-N(-aryl)-6-aminobenzothiazoles (28, 33, 35, 37, 41, 43) were prepared and purified as described previously (yield 50-70%),³ using catalytic hydrogenation with H₂, Pd/C, and an ethanol system.

NMR techniques

NMR spectra were recorded in DMSO-d₆ solutions at 300 K using a Brüker Avance DRX 500 spectrometer equipped with a Brüker CryoPlatform and a 5 mm cryo TXI probe. The temperature of the probe and preamplifier was 30 K. Chemical shifts were referenced

*Correspondence to: M. Robin, Laboratoire de Valorisation de la Chimie Fine, Université Paul Cézanne, Av. Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France. E-mail: maxime.robin@univ.3-mrs.fr

to DMSO- d_6 : $\delta_H = 2.50$ ppm, $\delta_C = 39.6$ ppm.¹⁵ Resonance multiplicities for ¹³C signals were established via the acquisition of DEPT spectra. For two-dimensional experiments, Brüker microprograms using gradient selection (gs) were applied. The gs-COSY spectra¹⁶ were obtained with an F_2 spectral width of 10 ppm and 2 K data points and an F_1 spectral width of 256 t_1 increments with sine-bell windows in both dimensions. The gs-HMQC spectra¹⁷ resulted from a 256 \times 1024 data matrix size with 2–16 scans per t_1 depending on the sample concentration, an interpulse delay of 3.2 ms and a 5:3:4 gradient combination. The gs-HMBC spectra¹⁸ were measured using a pulse sequence optimized for 10 Hz (interpulse delay for the evolution of long-range couplings, 50 ms) and the same gradient ratios.

RESULTS AND DISCUSSION

In Schemes 1-3, the structures and numbering of substituted benzothiazoles 1-43 are presented. Their ¹H and ¹³C NMR chemical shifts are given in Tables 1 and 2 respectively. Routine ¹³C NMR are insufficient to obtain unambiguous determination of chemical shifts since strict additivity using SCS values of all substituents¹⁹ does not apply for polysubstituted aromatic compounds.^{20–22} Therefore, we employed a sequence of NMR techniques as follows: (i) DEPT experiments to determine the multiplicities of the ¹³C signals; (ii) gs-COSY diagrams to determine the connectivity of protons; (iii) HMQC spectra to determine the ¹³C resonances of the protonated carbons; (iv) gs-HMBC sequences to assign the signals of quaternary and protonated carbons via two- and three-bond interactions.

$5 \xrightarrow{4}{7} 7a \xrightarrow{3a}{6} \xrightarrow{7}{7a} \xrightarrow{7a}{5} \xrightarrow{6}{5} \xrightarrow{7}{5} \xrightarrow{7}{5} \xrightarrow{7}{7a} \xrightarrow{7}{7a} \xrightarrow{8}{7} \xrightarrow{7}{6} \xrightarrow{7}{7a} \xrightarrow{7}{7a} \xrightarrow{8}{7} \xrightarrow{8}{7} \xrightarrow{7}{7a} \xrightarrow{8}{7} \xrightarrow{8}{7} \xrightarrow{7}{7a} \xrightarrow{8}{7} \xrightarrow{8} \xrightarrow{8}{7} \xrightarrow{8}{7} \xrightarrow{8} \xrightarrow{8}{7} \xrightarrow{8} \xrightarrow{8} \xrightarrow{8} \xrightarrow{8} \xrightarrow{8} \xrightarrow{8} \xrightarrow{8} 8$									
No	R.	Ba	R.	, Rei	Ra				
1	н	.,3 Н	. ч <u>4</u> Н	H	H				
2	н	н	N(CH ₂) ₂	н	Н				
3	н	н	OH	н	н				
4	н	н	OCH ₃	н	н				
5	н	н	Br	н	Н				
6	н	н	NH₂	н	н				
7	н	н	NHCOC ₆ H₅	н	н				
8	н	н	CH(CH ₃) ₂	н	н				
9	CI	н	н ["]	н	н				
10	ОН	н	н	н	н				
11	NH ₂	н	н	н	Н				
12	н	NHCOC ₆ H₅	н	н	н				
13	ОН	н	NH ₂	н	н				
14	CI	н	CI	н	н				
15	CI	н	F	н	н				
16	CI	н	NH₂	н	Н				
17	CI	Н	Н	NO₂	Н				
18	Br	н	н	OCH₃	н				
19	Cl	н	н	н	F				
20	Н	NH₂	OCH₃	н	Н				
21	н	OCH₃	NO ₂	Н	н				
22	н	CO_2CH_3	н	NO ₂	н				

Scheme 1. Structures of 2-arvl-benzothiazoles derivatives 1-22 (the numbering of the atoms is arbitrary).

3a

8.03

7.53

2a^b

7.93

7.46

1a

8.06

7.53

Atom

H-4

H-5

H-4'

Scheme 2. Structures of 2-pyridinyl-benzothiazoles derivatives 23-26.

Scheme 3. Structures of 2-N(-aryl)-benzothiazoles derivatives 27-43.

Benzothiazole ring resonances

The ¹H 500 MHz spectra for benzothiazoles 1-26 showed the expected four-spin system where complete ¹H assignment cannot be achieved solely by the analysis of the COSY connectivities. For the compounds 27-43, the protons would constitute a wellresolved AMX spin system for which ¹H signals were assigned with certainty on the basis of appearance of the multiplet patterns and the magnitude of the splittings. Also, for these derivatives, the NH proton appears as a singlet at ~11 ppm. For all the compounds, H-4 and H-7 displayed long-range correlations (³J coupling) with, respectively, C-7a and C-3a; assignment of both these carbons was straightforward based on their chemical shifts.²³ Additionally, C-2 exhibits three-bond cross peaks with H-2' and (or) H-6' (compounds 1-26) or with NH (compounds 27-43). In the case of 19, C-2 was easily assigned on the basis of ${}^{3}J$ C, F coupling. All these data are in agreement with the previously reported results on benzothiazole derivatives.23-27

Phenyl and pyridyl rings resonances

The assignment of ¹H and ¹³C chemical shifts for benzothiazoles **1–8** and **27–33** was trivial based on of signal intensities and chemical shifts. Spectral data for **15** and **17** were determined from the magnitude of ^{*n*}J H, F and ^{*n*}J C, F coupling constants. Finally, the complete ¹H and ¹³C assignment of these rings followed from HMBC correlation peaks observed for methyl protons (²J and ³J couplings) and aromatic signals (³J couplings).

H-6	7.44	7.35	7.44	7.42	7.36	7.32	7.45
H-7	8.10	8.03	8.12	8.10	8.04	7.98	8.13
H-2′	8.07	7.89	8.08	8.03	7.89	7.76	8.11
H-3′	7.55	6.82	7.35	7.12	7.56	6.68	8.05
H-4′	7.55	_	_	_	_	_	_
H-5′	7.55	6.82	7.35	7.12	7.56	6.68	8.05
H-6′	8.07	7.89	8.08	8.03	7.89	7.76	8.11
NH-2	_	_	_		_	_	_
Atom	e e	0.5	10-	11.	12. f	120	14-
	0d	9 a 9.10	10a 9 10	2 01	12a 0 10	15d 7 0E	14d
11-4 LI E	0.04	7.62	7 56	7 50	7 50	7.03	7.62
П-5 Ц (7.51	7.03	7.50	7.30	7.50	7.43	7.02
п-о 11-7	7.4Z	7.55 0.14	7. 4 7	7.41	7.50 9.10	7.50	7.34
п-/ цо/	0.07	0.14	0.10	8.07	0.19	7.93	0.23
п-2 ц 2/	7.97	-	-	-	0.09	-	7.02
п-э ц 4/	7.37	7.62	7.00	0.09	-	0.19	7.92
H-4	-	7.55	7.57	7.21	8.04	-	-
п-э ц 4	7.37	7.47 0.10	7.34 9.4E	6.65 7.62	7.38	0.20	7.07 0.00
п-о NIL 2	7.97	0.10	0.43	7.65	7.04	7.57	0.20
INIT-2	-	-	_	-	-	_	-
Atom	15a	16a	17a	18a ^g	19a	20a ⁿ	21a ¹
H-4	8.11	7.96	8.23	8.11	7.99	7.96	8.10
H-5	7.58	7.47	7.64	7.53	7.58	7.48	7.57
H-6	7.51	7.36	7.58	7.48	7.49	7.37	7.49
H-7	8.19	8.03	8.26	8.15	8.23	8.03	8.13
H-2′	-	-	-	-	-	7.47	7.91
H-3′	7.71	6.77	8.02	7.68	7.37	-	-
H-4′	-	-	8.38	7.05	7.40	-	-
H-5′	7.45	6.69	-	-	7.17	6.90	8.02
H-6′	8.26	8.03	9.06	7.55	-	7.26	7.73
NH-2	-	-	-	-	-	-	-
Atom	22a ^j	23b	24b	25b	26b	$27c^k$	$28c^{l}$
H-4	8.11	8.09	8.09	8.09	7.94	7.62	7.25
H-5	7.58	7.54	7.55	7.56	7.48	8.13	6.58
H-6	7.50	7.47	7.47	7.48	7.38	-	-
H-7	8.14	8.14	8.16	8.14	8.05	8.76	6.89
H-2′	8.80	-	9.24	8.74	8.14	7.18	7.11
H-3′	-	8.31	-	7.94	-	7.62	7.59
H-4′	8.89	8.01	8.41	-	8.05	-	-
H-5′	-	7.58	7.58	7.94	6.50	7.62	7.59
H-6′	8.66	8.71	8.73	8.74	-	7.18	7.11
NH-2	-	-	-	-	-	10.87	9.95
Atom	29c	30c	31c ⁿ	32c	33c	34c ^o	35c ^p
H-4	7.49	7.68	7.65	7.66	7.30	7.55	7.26
H-5	8.09	8.12	8.15	8.14	6.61	8.11	6.62
H-6	_	_	_	_	_	_	_
H-7	8.68	8.77	8.79	8.79	6.92	8.75	6.95
H-2′	7.32	7.84	7.28	7.42	7.35	_	_
H-3′	6.62	7.94	7.70	7.79	7.76	7.35	7.28
-	-						

(continued overleaf)

Table 1. ¹H chemical shifts of benzothiazole derivatives 1-43^a

 $4a^{\circ}$

8.01

7.51

5a

7.84

7.47

7a^d

8.04

7.54

6a

7.88

7.43

H-5′	6.62	7.94	7.70	7.79	7.76	7.19	7.14	
H-6′	7.32	7.84	7.28	7.42	7.35	7.88	8.12	
NH-2	10.53	m	11.00	11.06	10.23	10.49	10.11	
Atom	36c ^q	37c ^r	38c ^s	39c ^t	40c ^u	41c	42c	43c ^v
H-4	7.75	7.32	7.60	7.60	7.64	7.30	7.68	7.33
H-5	8.20	6.62	8.16	8.07	8.15	6.61	8.11	6.56
H-6	-	-	-	-	-	-	-	-
H-7	8.87	6.93	8.82	8.71	8.81	6.92	8.79	6.87
H-2′	8.02	7.97	-	7.62	_	8.29	-	-
H-3′	-	_	7.41	-	7.18	-	7.66	6.57
H-4′	-	_	-	-	7.74	7.61	-	-
H-5′	7.37	7.26	7.34	7.68	-	7.34	7.77	6.41
H-6′	7.54	7.44	7.90	7.25	8.97	8.00	8.75	7.17
NH-2	11.09	10.18	10.23	11.15	10.63	10.40	10.80	m

^a In ppm from TMS. DMSO-*d*₆ as solvent. ^b $\delta NCH_3 = 3.01 \text{ ppm}.$ ^c $\delta OCH_3 = 3.85$ ppm. $^{d} \delta NH-7 = 10.58 \text{ ppm}; \ \delta H-10' = 7.96; \ 8.02 \text{ ppm}; \ \delta H-11' = 7.51;$ 7.56 ppm; δ H-12' = 7.63 ppm. ^e $\delta CH = 2.91 \text{ ppm}; \delta CH_3 = 1.19 \text{ ppm}.$ ^f δNH-7 = 10.55 ppm; δ H-10' = 8.03 ppm; δ H-11' = 7.58 ppm; δ H-12' = 7.63 ppm. $^{g} \delta OCH_{3} = 3.81 \text{ ppm}.$ $^{h} \delta OCH_{3} = 3.83 \text{ ppm}.$ $^{i} \delta OCH_{3} = 4.05 \text{ ppm}.$ $^{j}\delta CO_{2}CH_{3} = 3.98 \text{ ppm}.$ $^{k}\delta CH_{3} = 2.27 \text{ ppm}.$ ${}^{1}\delta CH_{3} = 2.24 \text{ ppm}.$ ^m Signal not observed. ⁿ $\delta CH_2 = 3.54$ ppm. $^{o}\delta CH_{3} = 2.29 \text{ ppm}.$ $^{p}\delta CH_{3} = 2.25 \text{ ppm}.$ $^{q}\delta CH_{3} = 2.31 \text{ ppm}.$ $^{r} \delta CH_{3} = 2.26 \text{ ppm}.$ $^{s} \delta CH_{3} = 2.31 \text{ ppm}.$ ^t $\delta OCH_3 = 3.84 \text{ ppm}; \delta OCH_3 = 3.73 \text{ ppm}.$ ^u $\delta OCH_3 = 4.01 \text{ ppm}.$ $^{v} \delta CH_{3} = 2.28 \text{ ppm}.$

Table 2.	¹³ C chemical shifts	of benzothiazole	derivatives	1-43 ^a
----------	---------------------------------	------------------	-------------	-------------------

2a^b 4a^c 8a^f Atom 1a 3a 5a 6a 7a^e C-2 167.47 168.01 166.81 167.22 166.56 168.15 167.13 167.42 C-3a 153.77 154.09 153.80 153.87 153.96 153.96 153.77 153.79 C-4 123.09 122.04 122.96 122.64 123.22 121.92^d 122.72 122.87 C-5 126.80 126.47 126.86 126.67 126.40 126.38 126.71 126.65 C-6 125.69 124.64 125.64 125.25 125.35 124.52 125.40 125.44 122.47 122.31 122.54 122.33 122.56 122.04^d 122.39 122.32 C-7 C-7a 134.67 133.98 134.68 134.43 134.93 133.86 134.45 134.51 133.06 120.33 121.10 125.71 132.41 120.94 128.05 130.78 C-1′ C-2′ 127.36 128.65 128.94 129.04 128.78 128.89 127.98 127.38 C-3' 129.53 112.00 121.04 114.90 132.10 114.38 120.57 127.38 C-4′ 131.54 152.40 154.20 161.95 125.35 151.22 142.48 152.20 129.53 112.00 121.04 114.90 132.10 114.38 120.57 127.38 C-5′ C-6′ 127.36 128.65 128.94 129.04 128.78 128.89 127.98 127.38

Table 2. (Continued)								
Atom	9a	10a	11a	12a ^g	13a	14a	15a	16a
C-2	163.39	161.51	169.04	167.36	168.38	162.29	162.65	164.49
C-3a	152.14	151.13	153.42	153.67	153.96	152.00	152.11	152.28
C-4	123.41	122.19	121.91	123.02	122.06	123.41	123.29	122.41
C-5	126.74	125.89	126.59	126.85	126.77	126.89	126.95	126.59
C-6	125.86	124.78	125.28	125.74	124.58	126.17	126.06	125.01
C-7	122.16	121.37	122.23	122.53	121.09	122.41	122.37	121.96
C-7a	135.56	135.14	132.57	134.57	132.56	135.53	135.50	134.99
C-1′	131.49	123.51	116.72	134.75	107.57	130.40	118.39	118.24
C-2′	131.65	149.26	147.86	118.67	159.05	132.35	132.88	132.78
C-3′	130.97	119.74	113.33	140.27	99.78	130.61	118.37	114.35
C-4′	131.70	131.42	131.54	123.02	151.99	135.89	162.98	152.36
C-5′	127.84	123.65	115.81	129.92	106.56	128.27	115.67	113.40
C-6′	132.06	128.56	130.10	122.53	130.27	133.00	133.69	132.88
Atom	17a	18a ^h	19a	20a ⁱ	21a ^j	22a ^k	23b	24b
C-2	161.20	164.88	158.92	167.76	165.18	163.36	169.16	164.73
C-3a	151.74	152.30	153.44	153.98	153.52	153.01	153.90	153.57
C-4	123.49	123.37	124.31	122.45	123.58	123.18	123.44	123.30
C-5	127.15	126.78	126.74	126.80	127.23	126.77	126.73	127.07
C-6	126.44	125.96	126.22	125.36	126.44	126.07	126.08	126.12
C-7	122.29	122.27	121.97	122.72	122.75	122.19	122.67	122.70
C-7a	135.69	135.69	136.73	134.56	135.23	134.71	135.57	134.76
C-1′	135.24	134.54	122.50	119.99	138.01	132.23	_	_
C-2′	137.84	111.68	135.42	111.60	112.04	132.16	150.50	152.11
C-3′	132.71	135.04	126.27	133.89	152.62	132.23	126.23	129.09
C-4′	125.97	118.46	132.23	151.01	135.23	124.85°	137.95	134.88
C-5′	148.62	158.75	115.01	115.06	119.63	148.50	120.49	124.61
C-6′	125.85	116.94	161.25	126.04	126.44	124.80 ^c	150.07	147.95
Atom	25b	26b	27c ¹	28c ^m	29c	30c ⁿ	31c ^o	32c
C-2	165.06	164.17	166.93	157.58	168.66	166.17	166.91	166.41
C-3a	153.48	153.47	157.81	143.36	158.46	157.19	157.73	157.39
C-4	123.62	122.23	118.51	119.64	117.83 ^c	119.28	118.68	118.92
C-5	127.14	126.72	122.20	113.59	122.30	122.17	122.25	122.18
C-6	126.50	125.22	141.79	144.75	141.19	142.32	141.92	142.11
C-7	122.75	122.23	118.00	105.03	117.72 ^c	118.18	118.10	118.12
C-7a	134.94	134.00	130.99	131.23	130.83	131.21	131.04	131.06
C-1′	-	_	137.48	138.92	128.94	143.72	138.53	138.85
C-2′	150.99	138.73	118.97	117.40	122.16	117.83	118.90	120.15
C-3′	121.02	112.49	129.62	129.44	114.42	130.92	130.30	129.12
C-4′	139.62	136.56	132.59	130.21	146.13	124.96	130.23	126.80
C-5′	121.02	120.64	129.62	129.44	114.42	130.92	130.30	129.12
C-6′	150.99	162.34	118.97	118.97	122.16	117.83	118.90	120.15
Atom	33c	34c ^p	35c q	36c ^r	37c ^s	38c ^t	39c ^u	$40c^{v}$
C-2	157.09	169.13	159.25	166.44	157.24	169.25	165.48	167.24
C-3a	143.05	157.18	143.11	157.36	143.26	157.50	157.05	157.18
C-4	119.96	118.40	119.68	118.98	120.02	118.41	119.40	119.01
C-5	113.74	122.16	114.13	122.02	113.92	122.18	122.13	122.27
C-6	145.10	141.79	143.87	142.09	144.73	141.69	142.35	141.94
C-7	104.96	118.16	105.69	118.18	105.22	118.14	118.19	118.16
C-7a	131.35	131.41	131.96	130.97	131.34	131.33	131.10	131.60

C-1′	140.23	136.94	135.33	138.95	140.44	136.89	144.69	119.59
C-2′	118.72	126.54	123.83	118.54	117.12	133.59	102.09	152.92
C-3′	128.89	130.27	129.94	133.49	133.44	130.48	160.01	111.01
C-4′	124.68	133.98	133.93	129.92	127.71	129.33	113.38	126.48
C-5′	128.99	128.76	128.45	131.67	131.46	126.61	132.73	121.97
C-6′	118.72	125.68	122.95	117.30	116.08	125.41	109.68	128.48
Atom	41c ^w	42c	43c ^x	-	-	-	-	-
C-2	157.81	166.44	161.78	-	-	-	-	-
C-3a	143.45	156.49	143.60	-	-	-	-	-
C-4	119.95	119.42	119.01	-	-	-	-	-
C-5	113.89	121.92	113.54	-	-	-	-	-
C-6	144.97	141.85	144.16	-	-	-	-	-
C-7	105.28	118.08	105.41	-	-	-	-	-
C-7a	131.62	131.97	131.57	-	-	-	-	-
C-1′	141.25	129.55	123.99	-	-	-	-	-
C-2′	118.79	146.48	141.84	-	-	_	_	-
C-3′	136.47	108.99	116.35	-	-	-	-	-
C-4′	120.03	142.43	134.83	-	-	_	_	-
C-5′	128.67	115.80	117.47	-	-	-	-	-
C-6′	122.83	118.44	124.52	-	-	-	-	-

^a In ppm from TMS. DMSO-*d*₆ as solvent.

^b $\delta NCH_3 = 39.90$ ppm.

 $^{c} \delta OCH_{3} = 55.85 \text{ ppm}.$

^d May be reversed.

129.39; 127.95 ppm; δ C-11' = 128.68; 128.56 ppm; δ C-12' = 132.97; 131.96 ppm.

 $^{f}\delta CH = 33.52 \text{ ppm}; \delta CH_3 = 23.63 \text{ ppm}.$

 ${}^{g}\delta C-8' = 165.93 \text{ ppm}; \delta C-9' = 133.35 \text{ ppm}; \delta C-10' = 127.87 \text{ ppm};$

 δ C-11' = 128.58 ppm; δ C-12' = 131.93 ppm.

^h $\delta OCH_3 = 55.85$ ppm.

ⁱ $\delta OCH_3 = 56.14 \text{ ppm}.$

 $^{j} \delta OCH_{3} = 57.10 \text{ ppm}.$

^k $\delta CO_2 CH_3 = 163.58$ ppm; $\delta CO_2 CH_3 = 52.67$ ppm.

 $^{1}\delta CH_{3} = 20.63 \text{ ppm}.$

 $^{m} \delta CH_{3} = 20.57 \text{ ppm}.$

ⁿ $\delta CO_2 H = 167.14 \text{ ppm}.$

 $^{\circ}$ δCH₂ = 40.32 ppm; δCO₂H = 173.00 ppm.

 $^{p} \delta CH_{3} = 20.37 \text{ ppm}.$

 $^{q} \delta CH_{3} = 20.24 \text{ ppm}.$

 $^{r} \delta CH_{3} = 19.08 \text{ ppm}.$

 $^{s} \delta CH_{3} = 19.04 \text{ ppm}.$

 $^{t}\delta CH_{3} = 17.81 \text{ ppm}.$

^u $\delta OCH_3 = 55.80 \text{ ppm}; \ \delta CO_2 CH_3 = 166.12 \text{ ppm}; \ \delta CO_2 CH_3 =$ 51.72 ppm.

^v $\delta OCH_3 = 56.33 \text{ ppm}; \delta CO_2 H = 167.45 \text{ ppm}.$

```
<sup>w</sup> \delta CO_2 H = 167.54 \text{ ppm}.
```

```
^{x} \delta CH_{3} = 21.04 \text{ ppm}.
```

REFERENCES

- 1. Sakai H. Suzuki T. Murota M. Oketani K. Uchiumi T. Murakumi M, Takeguchi N. Br. J. Pharmacol. 2002; 136: 383.
- 2. Mahran MA, El-Nassry SM, Allam SR, El-Zawawy LA. Pharmazie 2003; 58: 527.
- 3. Hout S, Azas N, Darque A, Robin M, Di Giorgio C, Gasquet M, Galy JP, Timon-David P. Parasitology 2004; 129: 525.
- 4. Delmas F, Avellaneda A, Di Giorgio C, Robin M, De Clercq E, Timon-David P, Galy JP. Eur. J. Med. Chem. 2004; 39: 685.
- 5. Brantley E, Patel V, Stinson SF, Trapani V, Hose CD, Ciolino HP, Yeh GC, Gutkind JS, Sausville EA, Loaiza-Perez AI. Anti-Cancer Drugs 2005: 16: 137.
- 6. Leong CO, Suggitt M, Swaine DJ, Bibby MC, Stevens MF, Bradshaw TD. Mol. Cancer Ther. 2004; 3: 1565.
- 7. Heiser V, Engemann S, Bröcker W, Dunkel I, Boeddrich A, Waelter S, Nordhoff E, Lurz R, Schugardt N, Rautenberg S, Herhaus C, Barnickel G, Böttcher H, Lehrach H, Wanker EE. PNAS 2002; 99: 16 400.
- 8. Alagille D, Baldwin RM, Tamagnan GD. Tetrahedron Lett. 2005; 46: 1349.
- 9. Hrobàrik P, Sigmundova I. Synthesis 2005; 4: 600.
- 10. Robin M, Faure R, Perichaud A, Galy JP. Heterocycles 2000; 53: 387
- 11. Robin M, Galy JP, Faure R. Magn. Reson. Chem. 2001; 39: 225.
- 12. Robin M, Mialhe S, Pique V, Faure R, Galy JP. J. Heterocyclic Chem. 2002; 39: 295.
- 13. Avellaneda A, Robin M, Faure R, Perichaud A, Galy JP. Magn. Reson. Chem. 2002; 40: 545
- 14. Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE. J. Med. Chem. 2003; 46: 2740.
- 15. Günther H. La spectroscopie de RMN. Masson: Paris, 1994; 60.
- 16. Hurd RE. J. Magn. Reson. 1990; 87: 422.
- 17. Hurd RE, John BK. J. Magn. Reson. 1991; 91: 648.
- 18. Wilker W, Leibfritz D, Kerssebaum R, Bermel W. Magn. Reson. Chem. 1993; 31: 287.
- 19. Ewing DF. Org. Magn. Reson. 1979; 12: 499.
- 20. Bromilow J, Brownlee RTC, Craik DJ, Sadek M, Taft RW. J. Org. Chem. 1980; 45: 2429.
- 21. Sudmeijer O, Wilson AE, Hays GR. Org. Magn. Reson. 1984; 22: 459.
- 22. Bromilow J, Brownlee RTC, Craik DJ, Sadek M. Magn. Reson. Chem. 1986; 24: 862
- 23. Faure R, Elguero J, Vincent EJ, Lazaro R. Org. Magn. Reson. 1978; 11:617.
- 24. Sawhney SN, Boykin DW. J. Org. Chem. 1979; 44: 1136.
- 25. Abdelhamid AO, Parkanyi C, Khaledur Rashid SM, Loyd D. J. Heterocycl. Chem. 1988; 25: 403.
- 26. Babudri F, Florio S, Ingrosso G, Turco AM. Heterocycles 1986; 24: 2215.
- 27. Solcaniova E, Culak I. Magn. Reson. Chem. 1989; 27: 663.

Magn. Reson. Chem. 2006; 44: 102-105