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Abstract: A new synthetic method for the preparation of allyl
amine derivatives has been developed. The key steps of this method
are enantioselective addition of diethylzinc (Soai protocol) and allyl
cyanate-to-isocyanate rearrangement. Successful application of this
procedure realized the synthesis of lentiginosine (6).

Key words: stereoselective, asymmetric synthesis, amines, rear-
rangements, natural products

In connection with ongoing efforts to explore [3,3]-sigma-
tropic rearrangement of allyl cyanate for the synthesis of
natural products,1 we recently developed a stereoselective
allyl amine synthesis as shown in Scheme 1.

Scheme 1

The reaction sequence starts with the preparation of
stereochemically defined allyl alcohol 2 employing an
enantioselective addition of diethylzinc to a,b-unsaturat-
ed aldehyde 1.2 The resulting allyl alcohol 2 is then trans-
formed into allyl cyanate 3 which rearranges into allyl
isocyanate 4 with high degree of 1,3-chirality transfer.3

Finally, treatment of 4 with alcohols furnish a variety of
carbamates 5. This method will offer a useful entry to the
stereoselective synthesis of the protected allyl amine de-
rivatives. In this manuscript, we described successful ap-
plication of this procedure to the synthesis of the most
potent inhibitor of amyloglucosidase, lentiginosine (6),4

from L-tartaric acid (Figure 1).

Synthesis of lentiginosine (6) began with the o-iodoxy-
benzoic acid (IBX) oxidation of allyl alcohol 7,5 which
was prepared from L-tartaric acid employing known
procedure6 (Scheme 2). Enantioselective addition of di-
ethylzinc to the resulting a,b-unsaturated aldehyde 8
catalyzed by 7 mol% of (S)-diphenyl(1-methylpyrrolidin-

2-yl)methanol (DPMPM) smoothly afforded 9 and its
epimer as an inseparable 93:7 mixture.7 Treatment of 9
with trichloroacetyl isocyanate followed by hydrolysis
with potassium carbonate in aqueous methanol gave the
carbamate 10. Dehydration of 10 with triphenylphos-
phine, carbon tetrabromide and triethylamine at –20 °C
gave the allyl cyanate 11, which underwent [3,3]-sigma-
tropic rearrangement to afford the allyl isocyanate 12.
Since isolation of 12 using an aqueous work-up would
result in a decrease of yield due to the hydrolysis of the
isocyanate group, isocyanate 12 was treated in situ with
2,2,2-trichloroethanol to afford trichloroethoxy (Troc)
carbamate 13 in 86% yield from 10.

Scheme 2

HR

O

EtR

N C O

EtR

OH

ROH
EtR

N
COORH

EtR

OCN

* *

*

enantioselective 
addition of Et2Zn

[3,3]-sigmatropic 
rearrangement

*

1 2
3

4 5

O O

TBSO

Et

HO

OH

O O

TBSO

O O

TBSO

EtNCO

Cl3CCH2OH

O O

TBSO

Et

OCN

O O

TBSO

CHO

O O

TBSO

Et

O

H2N

O

O O

TBSO

EtNHCO

OCH2CCl3

Et2Zn, (S)-DPMPM
cyclohexaneIBX, DMSO

(90%)

i) CCl3CONCO

ii) K2CO3, MeOH, 
    H2O

 (95%)

PPh3,CBr4,Et3N, 
–20 °C to 0 °C

 (86%)

[3,3]-sigmatropic 
rearrangement

7 8

9 10

11

12 13

(93:7, 91%)

Figure 1

N

OHHO

H

Lentiginosine (6)

L-tartaric acid

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f M

as
sa

ch
us

et
ts

 B
os

to
n.

 C
op

yr
ig

ht
ed

 m
at

er
ia

l.



LETTER Synthesis of Lentiginosine 1035

Synlett 2003, No. 7, 1034–1036 ISSN 1234-567-89 © Thieme Stuttgart · New York

Since allyl carbamate 13 has three stererogenic centers
necessary for lentiginosine synthesis, we next turned to
the construction of indolizidine ring system using ring-
closing metathesis (RCM) (Scheme 3).

Scheme 3

Thus, deprotection of 13 with zinc and acetic acid in THF
followed by treatment of the resulting amine with 2-ni-
trobenzenesulfonyl chloride and Et3N furnished the nosyl
amide 15 as crystals.8 Alkylation of 14 with 3-buten-1-ol
under Mitsunobu condition (PPh3, DEAD, benzene) af-
forded 1,7-diene 15.9 A ruthenium-catalyzed RCM using
Grubbs catalysis (6 mol%) in refluxing benzene gave the
cyclized product 16.10 Removal of the silyl protecting
group in 16 with tetra-n-butylammonium fluoride fol-
lowed by tosylation of the resulting primary alcohol 17
furnished the tosylate 18. Two-step protective group ma-
nipulation involving acetonide hydrolysis (3 N HCl, aq
THF, 50 °C) and MOM protection (dimethoxymethane,
P2O5) gave 20. Deprotection of the nosyl group with con-
comitant cyclisation was achieved by the reaction of 20
with thiophenol and cesium carbonate to afford the cy-
clized product 21. Catalytic hydrogenation of 21 (H2, Pt-
C, EtOH) gave 22, and acid-catalyzed hydrolysis of the
two MOM protecting groups in 22 (3 N HCl, aq MeOH,
55 °C) followed by treatment with ion exchange resin
(Amberlite IRA 410) furnished lentiginosine 6, whose

spectroscopic properties were identical with those previ-
ously reported.11

In summary, a combination of Soai protocol and sigma-
tropic rearrangement for the stereoselective allyl amine
synthesis has been realized in the context of the synthesis
of lentiginosine (6). Further examination to test the gener-
ality of this stereocontrolled ally amine synthesis is now
under way.
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