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Abstract: A new synthetic method for the preparation of allyl
amine derivatives has been developed. The key steps of this method
are enantiosel ective addition of diethylzinc (Soai protocol) and alyl
cyanate-to-isocyanate rearrangement. Successful application of this
procedure realized the synthesis of lentiginosine (6).
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In connection with ongoing effortsto explore[3,3]-sigma-
tropic rearrangement of alyl cyanate for the synthesis of
natural products,! we recently developed a stereoselective
alyl amine synthesis as shown in Scheme 1.
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The reaction sequence starts with the preparation of
stereochemically defined allyl alcohol 2 employing an
enantioselective addition of diethylzinc to o,B-unsaturat-
ed aldehyde 1.2 The resulting allyl alcohol 2 isthen trans-
formed into alyl cyanate 3 which rearranges into allyl
isocyanate 4 with high degree of 1,3-chirality transfer.3
Finally, treatment of 4 with alcohols furnish a variety of
carbamates 5. This method will offer a useful entry to the
stereosel ective synthesis of the protected allyl amine de-
rivatives. In this manuscript, we described successful ap-
plication of this procedure to the synthesis of the most
potent inhibitor of amyloglucosidase, lentiginosine (6),*
from L-tartaric acid (Figure 1).

Synthesis of lentiginosine (6) began with the o-iodoxy-
benzoic acid (IBX) oxidation of allyl alcohol 7,° which
was prepared from L-tartaric acid employing known
procedure® (Scheme 2). Enantioselective addition of di-
ethylzinc to the resulting a,B-unsaturated aldehyde 8
catalyzed by 7 mol% of (S)-diphenyl(1-methylpyrrolidin-
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2-yl)methanol (DPMPM) smoothly afforded 9 and its
epimer as an inseparable 93:7 mixture.” Treatment of 9
with trichloroacetyl isocyanate followed by hydrolysis
with potassium carbonate in agueous methanol gave the
carbamate 10. Dehydration of 10 with triphenylphos-
phine, carbon tetrabromide and triethylamine at —20 °C
gave the allyl cyanate 11, which underwent [3,3]-sigma-
tropic rearrangement to afford the alyl isocyanate 12.
Since isolation of 12 using an aqueous work-up would
result in a decrease of yield due to the hydrolysis of the
isocyanate group, isocyanate 12 was treated in situ with
2,2,2-trichloroethanol to afford trichloroethoxy (Troc)
carbamate 13 in 86% yield from 10.

>< Et,Zn, (S)-DPMPM

IBX DMSO cyclohexane
7, 91%
1850 (904) TBSO _ (93:7, 91%)
8 CHO
i) CCI3CONCO ><
ii) r<2co3 MeOH, Q O

_Ho
TBSO (95%) TBSOA/_<:\;
0 O Et

< -

Q 0 ) .
PPh3,CBry,EtsN, [3,3]-sigmatropic
o0 o rearrangement
20°Cto0°C 8BS0 W
—FEt
5
11 N=c-O
X o
o] O
TBSOJ—R CICCH,0OH TBSO S\
\ _ .
86%)  O=C—NH Et
o=Cc=N \ Et | (86%) |
OCH,CCls
12 13

Scheme 2

Downloaded by: University of Massachusetts Boston. Copyrighted material.



LETTER

Synthesis of Lentiginosine 1035

Since allyl carbamate 13 has three stererogenic centers
necessary for lentiginosine synthesis, we next turned to
the construction of indolizidine ring system using ring-
closing metathesis (RCM) (Scheme 3).
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Thus, deprotection of 13 with zinc and acetic acid in THF
followed by treatment of the resulting amine with 2-ni-
trobenzenesulfonyl chloride and Et;N furnished the nosyl
amide 15 as crystals.® Alkylation of 14 with 3-buten-1-ol
under Mitsunobu condition (PPh;, DEAD, benzene) af-
forded 1,7-diene 15.° A ruthenium-catalyzed RCM using
Grubbs catalysis (6 mol%) in refluxing benzene gave the
cyclized product 16.1° Removal of the silyl protecting
group in 16 with tetra-n-butylammonium fluoride fol-
lowed by tosylation of the resulting primary acohol 17
furnished the tosylate 18. Two-step protective group ma-
nipulation involving acetonide hydrolysis (3 N HCI, ag
THF, 50 °C) and MOM protection (dimethoxymethane,
P,0;) gave 20. Deprotection of the nosyl group with con-
comitant cyclisation was achieved by the reaction of 20
with thiophenol and cesium carbonate to afford the cy-
clized product 21. Catalytic hydrogenation of 21 (H,, Pt-
C, EtOH) gave 22, and acid-catalyzed hydrolysis of the
two MOM protecting groupsin 22 (3 N HCI, ag MeOH,
55 °C) followed by treatment with ion exchange resin
(Amberlite IRA 410) furnished lentiginosine 6, whose

spectroscopic properties were identical with those previ-
ously reported.!

In summary, a combination of Soai protocol and sigma-
tropic rearrangement for the stereoselective alyl amine
synthesis has been realized in the context of the synthesis
of lentiginosine (6). Further examination to test the gener-
ality of this stereocontrolled ally amine synthesis is now
under way.
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