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ABSTRACT

A convenient and rapid synthesis of 4-(R)-(naphthalen-2-yloxy)-

1-(1-phenyl-(S)-ethyl)-pyrrolidin-3-(R)-ol and 4-(S)-(naphthalen-2-yloxy)-

1-(1-phenyl-(S)-ethyl)-pyrrolidin-3-(S)-ol is disclosed. The reaction
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scheme is highlighted by the meso-epoxidation of 1-(1-phenyl-(S)-ethyl)-

2,5-dihydro-1H-pyrrole followed by addition of 2-naphthol alkoxide to

provide both expected diastereoisomers. Separation of the diastereoi-

somers by crystallization provided access to both diastereoisomers in

modest yield without the employment of expensive chiral catalysts.

X-ray analysis of one of the diastereoisomers led to the unambiguous

assignment of each diastereoisomer. These chiral pyrrolidine analogues

should be useful as intermediates in natural product, combinatorial/
parallel synthesis, and medicinal chemistry.

Key Words: Chiral 3,4-disubstituted pyrrolidines; Meso-epoxide ring

opening; Pyrrolidine analogs.

INTRODUCTION

The presentation of substituents in both the 3- and 4-positions of the pyr-

rolidine scaffold combined with the stereochemical configuration present in

molecules 1 and 2, provide useful intermediates for natural product synthesis,

combinatorial/parallel synthesis, and medicinal chemistry.[1] However, proto-

cols for the preparation of chiral 3,4-disubstituted pyrrolidines are relatively

sparse.[1c] Methods have involved chiral starting materials, such as hydroxy-

citric acid lactones,[1d] D- and L-tetronic acids,[1g] tartaric acid,[1h] and chiral

oxazolidinones (used for 1,3-dipolar cycloadditions).[2a,2b] Disclosed herein,

we wish to report a convenient and rapid synthesis of 4-(R)-(naphthalen-2-

yloxy)-1-(1-phenyl-(S)-ethyl)-pyrrolidin-3-(R)-ol (1) and 4-(S)-(naphthalen-

2-yloxy)-1-(1-phenyl-(S)-ethyl)-pyrrolidin-3-(S)-ol (2) from inexpensive

racemic starting materials (Scheme 1).

Construction of the pyrrolidine core (A) began with a condensation

reaction between cis-1,4-dichloro-2-butene and S-(-)-a-methylbenzylamine,

an amine that served as a chiral auxillary for the generation of diastereoi-

somers. Epoxidation of A with meta-chloroperoxybenzoic acid produced

compound B in good yield.a

Epoxide ring opening with 2-naphthol in the presence of cesium carbo-

nate gave two diastereoisomers (1 and 2) in 41% yield in approximately a

1 : 1 ratio. The products were crystallized from a mixture of dichloromethane

and hexanes to provide compound 1 (56% from mixture/12% overall yield)

as a single diastereoisomer. The stereochemistry of compound 1 was

aCompound B was characterized by 1H NMR, COSY, HSQC, and NOESY (data not

shown).
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unambiguously assigned by x-ray[3],b and by high-resolution NMR techniques

(1H NMR, COSY, HSQC, NOESY) (Fig. 1). Compound 2 remained in the

mother liquor and was accessed by evaporation of solvent in vacuo, followed

bCrystallographic Experimental Details:

A. Crystal Data

Formula C22H23NO2

Formula weight 333.41

Crystal dimensions (mm) 0.46 � 0.36 � 0.23

Crystal system Monoclinic

Space group I2 (an alternate setting of C2 [No. 5])

Unit cell parameters1

a(Å) 18.3026 (18)

b(Å) 6.8814 (7)

c(Å) 14.7614 (15)

b(deg) 103.926 (2)

V(Å3) 1804.5 (3)

Z 4

r calcd. (g cm23) 1.227

m (mm21) 0.078

B. Data Collection and Refinement Conditions

Diffractometer Bruker PLATFORM/SMART 1000 CCD2

Radiation (l[Å]) Graphite-monochromated Mo Ka (0.71073)

Temperature (8C) 280

Scan type v scans (0.28) (25s exposures)
Data collection 2u limit (deg) 52.76

Total data collected 4609 (220 � h � 22, 28 � k � 8,

212 � l � 18)

Independent reflections 3481 (Rint ¼ 0.0241)

Number of observed

reflections (NO)

3140 [Fo
2
� 2s (Fo

2)]

Structure solution method Direct methods (SHELXS-86[3a])

Refinement method Full-matrix least-squares on F2

(SHELXL-93[3b],3)

Absorption correction method Multi-scan (SADABS)

Range of transmission factors 0.9823–0.9650

Data/restraints/parameters 3481 [Fo
2
� 23s(Fo

2)]/0/227
Flack absolute structure

parameter[3c],4
0.3 (11)

Goodness-of-fit (S)5 1.038 [Fo
2
� 23s(Fo

2)]

Final R indices6

R1 [Fo
2
� 2s(Fo

2)] 0.0356

wR2[Fo
2
� 23s(Fo

2)] 0.0878

Largest difference peak and hole 0.189 and 20.123 e Å23

Holsworth et al.4424
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by flash column chromatography. Compound 2was isolated in 50% yield from

the mixture and in 11% overall yield.

In summary, a practical synthesis of 4-(R)-(naphthalen-2-yloxy)-1-(1-phenyl-

(S)-ethyl)-pyrrolidin-3-(R)-ol (1) and 4-(S)-(naphthalen-2-yloxy)-1-(1-phenyl-(S)-

ethyl)-pyrrolidin-3-(S)-ol (2) from inexpensive racemic starting materials is

described. Separation of diastereoisomers by crystallization provided access to

both diastereoisomers in good yield without the employment of expensive

chiral catalysts.[4] Compounds 1 and 2 can serve as useful chiral intermediates

in natural product, combinatorial/parallel synthesis, and medicinal chemistry.

EXPERIMENTAL

All reagents were purchased from Aldrich and used without further

purification. Solvents used were of high-performance liquid chromatography

(HPLC) grade and used without further purification. Nuclear magnetic

resonance (NMR) spectra were recorded on a Varian 400MHz spectrometer

and referenced to solvent. Melting point values are uncorrected.

1-(1-Phenyl-(S)-Ethyl)-2,5-Dihydro-1H-pyrrole (A)

To a solution of cis-1,4-dichloro-2-butene (5.0 g, 40mmol) in ethyl

acetate (200mL) was added a mixture of S-(-)-a-methylbenzylamine (4.85 g,

1Obtained from least-squares refinement of 3039 reflections with 5.698 , 2u ,

52.528.
2Programs for diffractometer operation, data collection, data reduction, and

absorption correction were those supplied by Bruker.
3Refinement on Fo

2 for all reflections [all of these having Fo
2
� 23s(Fo

2)].

Weighted R-factors wR2 and all goodnesses of fit S are based on Fo
2; conventional

R-factors R1 are based on Fo, with Fo set to zero for negative Fo
2. The observed criterion

of Fo
2 . 2s(Fo

2) is used only for calculating R1, and is not relevant to the choice of

reflections for refinement. R-factors based on Fo
2 are statistically about twice as large

as those based on Fo, and R-factors based on all data will be even larger.
4The Flack parameter will refine to a value near zero if the structure is in the

correct configuration and will refine to a value near one for the inverted configuration.

In this case, the absolute structure cannot be reliably determined from the x-ray data,

but can be assigned based upon the known stereochemistry of the precursor pyrrolidin-

3,4-diol.
5S ¼ [Sw(Fo

22 Fc
2)2/(n2 p)]1/2 (n ¼ number of data; p ¼ number of parameters

varied; w ¼ [s2(Fo
2)þ (0.0387P)2þ 0.4245P]21, where P ¼ [Max(Fo

2, 0)þ 2Fc
2]/3).

6R1 ¼ SkFoj2 jFck/SjFoj; wR2 ¼ [Sw(Fo
22 Fc

2)2/Sw(Fo
4)]1/2.

Versatile Chiral Intermediates for Synthesis 4425
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40mmol) and triethylamine (12 g, 120mmol) in ethyl acetate (50mL) at room

temperature. The resulting mixture was stirred at room temperature overnight,

and the crystallized solid was removed by filtration. After the solvent was

evaporated in vacuo, the residue was subjected to flash column chromatography

on silica gel eluting with ethyl acetate and hexanes (1 : 2) to give 4.0 g of

1-(1-phenyl-(S)-ethyl)-2,5-dihydro-1H-pyrrole (A) in 58% yield. 1H NMR

(400MHz, CDCl3) d: 7.38–7.22 (m, 5H), 5.80 (s, 2H), 3.58–3.32 (m, 5H),

1.43–1.41 (d, J ¼ 6.0Hz, 3H). 13C NMR (100MHz, CDCl3) d: 145.90,

128.62, 128.04, 127.44, 127.13, 65.40, 58.77, 23.84. MS: m/z 173.9 [Mþ 1].

3-(1-Phenyl-(S)-Ethyl)-6-oxa-3-aza-Bicyclo[3.1.0]Hexane (B)

To a solution of compound A (4.0 g, 23mmol) in a mixture of H2SO4

(2.5 g, 27.8mmol), H2O (3mL), and acetone (50mL) was added m-CPBA

portion-wise at 08C with stirring. After addition, the resulting mixture was

stirred at room temperature overnight, and then the solvent was removed

under reduced pressure. The residue was treated with 1N NaOH and

extracted with dichloromethane. The organic layer was dried over Na2SO4

Figure 1. X-ray of compound 1.

Holsworth et al.4426
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and evaporated in vacuo. The residue was subjected to flash column chromato-

graphy on silica gel eluting with ethyl acetate and hexanes (1 : 3) to give 2.5 g

of 3-(1-phenyl-(S)-ethyl)-6-oxa-3-aza-bicyclo[3.1.0]hexane (B) in 57% yield.

HPLC: 90.2%. 1H NMR (400MHz, CDCl3) d: 7.32–7.20 (m, 5H), 3.60–3.59

(m, 1H), 3.50–3.49 (m, 1H), 3.41–3.35 (m, 2H), 2.98 (d, J ¼ 11.7 Hz, 1H),

2.46 (dd, J ¼ 1.0Hz, J ¼ 11.2 Hz, 1H), 2.21 (dd, J ¼ 1.5Hz, J ¼ 11.7Hz,

1H), 1.37–1.36 (d, J ¼ 6.0Hz, 3H). 13C NMR (100MHz, CDCl3) d:

144.74, 128.57, 127.52, 127.33, 64.92, 55.83, 52.73, 22.96. MS: m/z 190.1
[Mþ 1]. [a]24.7 ¼ 222.78 (c ¼ 0.5, CH3OH).

4-(R)-(Naphthalen-2-yloxy)-1-(1-Phenyl-(S)-Ethyl)-
Pyrrolidin-3-(R)-ol (1) and 4-(S)-(Naphthalen-2-yloxy)-1-

(1-Phenyl-(S)-Ethyl)-Pyrrolidin-3-(S)-ol (2)

A mixture of compound B (2.5 g, 13mmol), 2-naphthol (3.8 g, 26mmol),

Cs2CO3 (10.8 g, 33mmol), and 18-crown-6 (25mg) in ethanol were refluxed

overnight. The solvent was removed under reduced pressure. The residue was

dissolved in ethyl acetate, washed with 1N NaOH, brine, and H2O. The

organic layer was dried over Na2SO4 and concentrated in vacuo. The residue

was subjected to flash column chromatography on silica gel eluting with

ethyl acetate and hexanes (1 : 3) to give 1.8 g of compounds 1 (Chiral HPLC:

44.89%, Rt ¼ 7.291min) and 2 (Chiral HPLC: 54.84%, Rt ¼ 6.8min) as a

mixture in 41% yield. HPLC: 99.93%. (Chiral HPLC method: isopropyl

alcohol/hexanes (20 : 80): Chiral PAK AD 0.46 cmu � 25 cm).

4-(R)-(Naphthalen-2-yloxy)-1-(1-Phenyl-(S)-Ethyl)-
Pyrrolidin-3-(R)-ol (1)

1.8 g of compounds 1 and 2 were dissolved in dichloromethane (�2mL)

and added to hexanes (200mL). The resulting solution was allowed to stand

at room temperature for 2 days. Compound 1 (0.45 g) crystallized out prefer-

entially [56% of 0.81 g (calcd.)]. (Chiral HPLC: 93%, Rt ¼ 7.326min)

Mp ¼ 157–1588C; 1H NMR (400MHz, CDCl3) d 7.77–7.73 (m, 3H),

7.46–7.12 (m, 9H), 4.79–4.76 (m, 1H), 4.28 (br s, 1H), 3.58 (dd, J ¼ 6.8Hz,

J ¼ 10.7Hz, 1H), 3.39 (q, J ¼ 6.8Hz, 1H), 2.72 (dd, J ¼ 4.9Hz, J ¼

10.2Hz, 1H), 2.70–2.59 (m, 1H), 2.53 (dd, J ¼ 3.9Hz, J ¼ 10.7Hz, 1H),

2.35 (s, 1H), 1.43–1.42 (d, J ¼ 6.3Hz, 3H). 13C NMR (100MHz, CDCl3)

d 155.65, 144.60, 134.67, 129.81, 129.22, 128.74, 127.82, 127.43, 127.35,

127.14, 126.64, 124.01, 119.36, 108.19, 83.33, 75.59, 65.05, 59.35, 57.37,

22.79. MS: m/z 334.1 [Mþ 1]. [a]20.1 ¼ 268.58 (c ¼ 0.1, CH3OH). Anal.

Versatile Chiral Intermediates for Synthesis 4427
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calcd. for C22H23NO2 (%): C, 79.25; H, 6.95; N, 4.20. Found: C, 78.58; H, 6.82;

N, 4.13.

4-(S)-(Naphthalen-2-yloxy)-1-(1-Phenyl-(S)-Ethyl)-
Pyrrolidin-3-(S)-ol (2)

The mother liquor was evaporated in vacuo and subjected to flash

column chromatography [ethyl acetate/hexanes (1 : 10 to 1 : 5)] to afford

0.5 g of compound 2 [50% of 1 g (calcd.)]. Mp ¼ 111–1128C; 1H NMR

(400MHz, CDCl3) d 7.74–7.70 (m, 3H), 7.43–7.25 (m, 7H), 7.14–7.09 (m,

2H), 4.69 (t, J ¼ 4.9Hz, 1H), 4.33 (br s, 1H), 3.38 (q, J ¼ 7.2Hz, 1H), 3.20

(dd, J ¼ 6.8Hz, J ¼ 10.7 Hz, 1H), 2.91 (d, J ¼ 9.6Hz, 1H), 2.77 (dd,

J ¼ 4.9Hz, J ¼ 9.8Hz, 2H), 2.52 (dd, J ¼ 3.9Hz, J ¼ 10.7 Hz, 1H), 1.40

(d, J ¼ 7.2Hz, 3H). 13C NMR (100MHz, CDCl3) d 155.65, 144.50, 134.68,

129.79, 129.23, 128.67, 127.80, 127.47, 127.39, 127.13, 126.62, 124.00,

119.32, 108.26, 83.23, 75.74, 65.06, 58.86, 57.89, 22.72. MS: m/z 334.1

[Mþ 1]. [a]25.1 ¼ þ21.28 (c ¼ 0.5, CH3OH). Anal. calcd. for C22H23NO2

(%): C, 79.25; H, 6.95; N, 4.20. Found: C, 78.77; H, 7.06; N, 4.18.
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