Bioorganic & Medicinal Chemistry Letters 21 (2011) 6049-6053

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and biological evaluation of 1-substituted-3-(6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-*a*]pyridin-6-yl)pyrazoles as transforming growth factor- β type 1 receptor kinase inhibitors

Cheng Hua Jin, Maddeboina Krishnaiah, Domalapally Sreenu, Vura Bala Subrahmanyam, Kota Sudhakar Rao, Annaji Venkata Nagendra Mohan, Chul-Yong Park, Jee-Yeon Son, Yhun Yhong Sheen, Dae-Kee Kim*

College of Pharmacy, Ewha Womans University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul 120-750, Republic of Korea

ARTICLE INFO

Article history: Received 25 May 2011 Revised 29 July 2011 Accepted 13 August 2011 Available online 22 August 2011

Keywords: TGF-β ALK5 inhibitor Fibrosis Cancer Kinase assay Cell-based luciferase reporter assay

ABSTRACT

A series of 1-substituted-3-(6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-*a*]pyridin-6-yl)pyrazoles **14a-ae**, **16a**, **16b**, and **21a-c** has been prepared and evaluated for their ALK5 inhibitory activity in an enzyme assay and in a cell-based luciferase reporter assay. The 4-([1,2,4]triazolo[1,5-*a*]pyridin-6-yl)-*N*-(4-methoxyphenyl)-3-(6-methylpyridin-2-yl)-1*H*-pyrazole-1-carbothioamide (**14n**) inhibited ALK5 phosphorylation with IC_{50} value of 0.57 nM and showed 94% inhibition at 100 nM in a luciferase reporter assay using HaCaT cells permanently transfected with p3TP-luc reporter construct.

© 2011 Elsevier Ltd. All rights reserved.

The transforming growth factor- β (TGF- β) is the most potent and ubiquitous profibrogenic cytokine. TGF-B transduces signals through two distinct serine/threonine kinase receptors, termed type I and type II.^{1–3} Following the binding of ligand to the constitutively active type II receptor, the type I receptor, also called as activin receptor-like kinase 5 (ALK5), is phosphorylated, which further phosphorylates Smad2 or Smad3. Phosphorylated Smad2 and Smad3 form a heteromeric complex with Smad4, which translocates to the nucleus and binds to the promoters of TGF-β target genes involved in cell differentiation, proliferation, apoptosis, migration, and extracellular matrix production.⁴ TGF- β plays a pivotal role in the development of fibrosis in various organ systems such as kidney,⁵ heart,⁶ lung,⁷ and liver.⁸ Deregulation of TGF- β signaling has been also implicated in various human diseases including cancer,⁹ pancreatic diseases,¹⁰ and hematological malignancies.¹¹ Recent studies have shown that blocking the TGF-β signaling pathway with several small molecule ATP-competitive ALK5 inhibitors (Fig. 1) such as 1 (SB-505154),¹² 2 (SB-525334),¹³ 3 (GW6604),¹⁴ 4 (SD-208),^{15,16} and 5 (LY-2157299)¹⁷ inhibited autophosphorylation of ALK5 and TGF- β induced transcription of matrix genes in receptor assays at sub-micromolar concentrations. Among them, 2, 3, and 4 effectively retarded progressive fibrosis in kidney, liver and lung, respectively, and 4 and 5 also strongly inhibited growth and invasiveness of cancer cells in animal models. We have prepared a number of the 2-pyridvl-substituted five-membered heterocycles as ALK5 inhibitors and found that insertion of a methylene, a methyleneamino, or an aminomethylene linkage between a central five-membered heterocyclic ring and a phenyl ring significantly increased ALK5 inhibitory activity and selectivity.¹⁸⁻²⁶ One of our preclinical candidates, IN-1130 (6), demonstrated its remarkable activity as a suppressor of fibrogenic process of unilateral ureteral obstruction in rats,²⁷ ameliorated experimental autoimmune encephalomyelitis, a mouse model for multiple sclerosis,²⁸ and reduced tunical fibrosis in rats.²⁹ It also inhibited cancer metastasis in MMTV/c-Neu breast cancer mice and enhanced CTL response in cancer mice.³⁰ Another preclinical candidate, IN-1233 (7), effectively prevented development and progression of pulmonary arterial hypertension in monocrotaline rat model through inhibition of TGF-β signaling³¹ and reduced granulation tissue formation after bare metallic stent placement in a rat urethral model.32

Recently, Tojo et al.³³ and we²³ have reported a novel class of ALK5 inhibitors possessing a thioamide linkage between a pyrazole ring and a phenyl ring, such as A-83-01 (**8**) and 3-(3-(6-methylpyridin-2-yl)-4-(quinolin-6-yl)-1H-pyrazol-1-carbothioamido)benzmide (**9**).

^{*} Corresponding author. Tel.: +82 2 3277 3025; fax: +82 2 3277 2467. *E-mail address:* dkkim@ewha.ac.kr (D.-K. Kim).

Figure 1. ALK5 inhibitors under development.

Insertion of a thioamide linkage between a pyrazole ring and a phenyl ring markedly increased ALK5 inhibitory activity, thus, **8** exhibited significant inhibition of the transcriptional activity induced by ALK5,³³ and **9** showed more than 90% inhibition at 100 nM in luciferase reporter assays using HaCaT cells transiently transfected with p3TP-luc reporter construct and ARE-luc reporter construct.²³ As part of our continuing efforts to develop more potent and selective ALK5 inhibitors, in this Letter, we have prepared a

series of 1-substituted-3-(6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-*a*]pyridin-6-yl)pyrazoles **14a–ae**, **16a**, **16b**, and **21a–c** possessing a thioamide linkage between a pyrazole ring and a phenyl ring or a piperidinyl ring. The target molecules **14a–ae** have a [1,2,4]triazolo[1,5-*a*]pyridin-6-yl moiety rather than a quinoxalin-6-yl moiety of **2** and **6** or a quinolin-6-yl moiety of **7** and **9** at the 4-position of the pyrazole and have various substituents such as F, Cl, Me, CF₃, OMe, OCF₃, CN, and CONH₂ in the phenyl ring. In

Scheme 1. Reagents and conditions: (a) (i) diphenyl (6-methylpyridin-2-yl)(phenylamino)methylphosphonate, Cs₂CO₃, THF/i-PrOH (4:1), rt, 16 h; (ii) 3 N HCl, rt, 1 h; (b) (i) DMF·DMA, 90 °C, 4 h; (ii) N₂H₄·H₂O, EtOH, reflux, 3 h; (c) NaH, anhydrous THF, 0 °C to rt, 1 h.

Scheme 2. Reagents and conditions: (a) NaH, anhydrous THF, 0 °C to rt, 1 h.

pharmacokinetic studies, the bioavailability of orally administered **6** was 84.9%, 34.4%, 11.4%, and 8.95% in dogs, monkeys, rats, and mice, respectively.²⁵ The major metabolite of **6** was detected in the systemic circulation of rat and mouse and was identified as 3-((4-(2-hydroxyquinoxalin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazo I-2-yl)methyl)benzamide or <math>3-((4-(3-hydroxyquinoxalin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazoI-2-yl)methyl)benzamide.²⁵ To overcome metabolic oxidation of 2- or 3-position of quinoxalin-6-yl moiety since metabolic oxidation of 2-position of this moiety is assumed to be difficult due to the presence of two adjacent nitrogen atoms.

The target molecules **16a** and **16b** have been prepared to compare the role of a phenyl ring of **14a–ae** with a piperidinyl ring. To examine the influence of a methyl substituent at the 2-position of the [1,2,4]triazolo[1,5-*a*]pyridin-6-yl moiety on ALK5 inhibition, we have also prepared the target molecules **21a–c**.

A series of 3-(6-methylpyridin-2-yl)-1-(phenylcarbothioamido)-4-([1,2,4]triazolo[1,5-*a*]pyridin-6-yl)pyrazoles **14a–ae** was prepared as shown in Scheme 1. The [1,2,4]triazolo[1,5-*a*]pyridine-6-carbaldehyde (**10**)³⁴ was coupled with diphenyl (6-methylpyridin-2-yl)(phenylamino)methylphosphonate³⁵ in a mixture of THF and *i*-PrOH (4:1) in the presence of Cs₂CO₃ at room temperature and subsequently treated with 3 N HCl to afford the monoketone **11**³⁶ in 90% yield. Treatment of **11** with *N*,*N*-dimethylformamide dimethyl acetal at 90 °C and followed by reaction with hydrazine monohydrate in absolute EtOH produced the pyrazole **12**³⁷ in 80% yield. The pyrazole **12** was alkylated with appropriately substituted phenyl isothiocyanates (**13a–ae**) in the presence of NaH in anhydrous THF to afford the target compounds **14a–ae** in various yields (4–75%). Compound **14g** was obtained only in 4% yield due to the low reactivity of 3-(trifluoromethoxy)phenyl isothiocyanate (**13g**). The 4-([1,2,4]tria zolo[1,5-*a*]pyridin-6-yl)-*N*-(1-methylpiperidin-4-yl)-3-(6-methylpyridin-2-yl)-1*H*-pyrazole-1-carbothioamide

(16a) and 4-([1,2,4] triazolo[1,5-*a*]pyridin-6-yl)-*N*-(1-benzylpiperidin-4-yl)-3-(6-met hylpyridin-2-yl)-1*H*-pyrazole-1-carbothioamide (16b) were prepared as shown in Scheme 2. The pyrazole 12 was alkylated with 4-isothiocyanato-1-methylpiperidine (15a)³⁸ or 1-benzyl-4-isothiocyanatopiperidine (15b)³⁹ in the same reaction condition as described in Scheme 1 to afford the 16a or 16b in 25% or 41% yields, respectively.

The 3-(6-methylpyridin-2-yl)-4-(2-methyl-[1,2,4]triazolo[1,5*a*]pyridin-6-yl)-1-(phenylcarbothioamido)pyrazoles **21a–c** were prepared as shown in Scheme 3. Formylation of 6-iodo-3-methyl-[1,2,4]triazolo[4,3-*a*]pyridine (**17**)⁴⁰ with *i*-PrMgCl and *N*,*N*-dimethylformamide in anhydrous THF followed by quenching with 1 N HCl gave the Dimroth-like rearranged aldehyde **18** in 36% yield. The aldehyde **18** was coupled with diphenyl (6-methylpyridin-2yl)(phenylamino)methylphosphonate to afford the monoketone **19** in 88% yield. The monoketone **19** was converted to the pyrazole **20** in 45% yield in the same reaction condition as described in Scheme 1. The pyrazole **20** was further alkylated with phenyl isothiocyanates (**13a**, **13h**, and **13i**) in the presence of NaH in anhydrous THF to afford the target compounds **21a–c** in 53–88% yields.

To investigate whether these compounds 14a-ae, 16a, 16b, and **21a-c** could inhibit ALK5, a kinase assay was performed using the purified human ALK5 kinase domain produced in Sf9 insect cells (Table 1). The ALK5 inhibitory activity of the pyrazoles 14b-14ae having various substituents such as F, Cl, Me, CF₃, OMe, OCF₃, CN, and CONH₂ in the phenyl ring was compared with that of the unsubstituted pyrazole 14a. All the pyrazoles 14a-ae inhibited ALK5 at concentrations (IC₅₀ = 0.57-15.60 nM) as shown in Table 1. Among the *meta*-substituted compounds **14b-i**, the *m*-Cl substituted compound **14c** ($IC_{50} = 2.37 \text{ nM}$) and *m*-OMe substituted compound 14f (IC₅₀ = 2.26 nM) displayed slightly more potent ALK5 inhibition than the unsubstituted compound 14a (IC₅₀ = 2.82 nM). Among the *para*-substituted compounds **14j-q**, the *p*-OMe substituted compound **14n** ($IC_{50} = 0.57 \text{ nM}$) was highly potent and was five-fold more potent than the compound **14a**. The *p*-CN substituted compound **14p** (IC_{50} = 2.95 nM) showed the similar level of potency to that of the compound 14a. Introduction of a substituent at the ortho-positon was proved to be not beneficial, thus, the o-Cl substituted compound 14s (IC₅₀ = 2.83 nM) only displayed the comparable ALK5 inhibitory activity to that of the 14a. Among the di-substituted compounds 14w-ae, the 3,4-F₂ substi-

Scheme 3. Reagents and conditions: (a) i-PrMgCl, anhydrous THF, anhydrous DMF, 1 N HCl, 0 °C to rt, 4 h; (b) (i) diphenyl (6-methylpyridin-2-yl)(phenylamino)methylphosphonate, Cs₂CO₃, THF/i-PrOH (4:1), rt, 16 h; (ii) 3 N HCl, rt, 1 h; (c) (i) DMF-DMA, 90 °C, 4 h; (ii) N₂H₄·H₂O, EtOH, reflux, 3 h; (d) NaH, anhydrous THF, 0 °C to rt, 1 h.

Table 1

Inhibitory activity of 1-substituted-3-(6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)pyrazoles 14a-ae, 16a, 16b, and 21a-c on ALK5

Compd	R	IC ₅₀ (nM)		Selectivity index ^c	p3TP-luciferase activity (% control) ^{d,e}
		ALK5 ^a	p38α ^b		
Mock	_	_	_	_	6 ± 1.9
TGF-β	_	-	_	_	100 ± 2.6
14a	Н	2.82	2800	993	10 ± 1.4
14b	m-F	4.43	5680	1282	8 ± 0.1
14c	m-Cl	2.37	5440	2295	8 ± 0.6
14d	<i>m</i> -Me	3.98	3680	925	8 ± 0.4
14e	m-CF ₃	3.01	1980	658	5 ± 0.1
14f	<i>m</i> -OMe	2.26	>10000	>4425	8 ± 0.5
14g	m-OCF ₃	10.00	>10000	>1000	7 ± 0.4
14h	m-CN	4.50	6430	1429	5 ± 0.4
14i	m-CONH ₂	3.45	4280	1241	8 ± 0.4
14j	p-F	4.09	6670	1631	6 ± 0.1
14k	p-Cl	3.87	5530	1429	7 ± 0.7
14l	<i>p</i> -Me	6.61	2960	448	6 ± 0.1
14m	p-CF ₃	3.04	4120	1355	6 ± 0.2
14n	<i>p</i> -OMe	0.57	6360	11158	6 ± 0.2
140	p-OCF ₃	3.30	5220	1582	7 ± 0.8
14p	p-CN	2.95	5230	1773	5 ± 0.1
14q	p-CONH ₂	15.60	4950	317	9 ± 0.4
14r	o-F	5.39	3000	557	4 ± 0.3
14s	o-Cl	2.83	3220	1138	5 ± 0.3
14t	o-Me	4.00	3680	920	21 ± 0.7
14u	o-OMe	5.69	7560	1329	11 ± 1.3
14v	o-OCF ₃	3.98	3830	962	5 ± 0.1
14w	3,4-F ₂	2.12	1450	684	7 ± 1.0
14x	3,5-F ₂	3.20	3810	1191	6 ± 0.2
14y	3,4-Cl ₂	3.78	1690	447	6 ± 0.3
14z	3,5-Cl ₂	5.08	2850	561	7 ± 0.4
14aa	3,4-Me ₂	3.54	5810	1641	7 ± 0.5
14ab	3,5-Me ₂	3.97	5390	1358	9 ± 0.2
14ac	3,5-(CF ₃) ₂	4.12	5040	1223	8 ± 1.4
14ad	3,4-(OMe) ₂	4.37	3840	879	10 ± 1.1
14ae	3,5-(OMe) ₂	2.49	2460	988	8 ± 0.4
16a	Me	39.47	496	13	81 ± 0.8
16b	Benzyl	95.70	598	6	90 ± 4.5
21a	Н	102.00	7260	71	64 ± 3.2
21b	m-CN	85.30	3200	38	53 ± 2.1
21c	m-CONH ₂	66.80	6580	99	63 ± 1.5
1 (SB-505124)	-	54.40	594	11	34 ± 2.7
6 (IN-1130)	_	17.20	480	28	20 ± 0.7

^a ALK5 was expressed in Sf9 insect cells as human recombinant GST-fusion protein by means of the vaculovirus expression system. A proprietary radioisotopic protein kinase assay (³³PanQinase[®] Activity Assay) was performed at ProQinase GmbH (Freiburg, Germany) using casein as a substrate.

^b p38α MAP kinase was expressed as untagged human recombinant protein in *E. coli*. The enzyme was purified by Ni-NTH-agarose (Qiagen). A proprietary radioisotopic protein kinase assay (³³PanQinase[®] Activity Assay) was performed at ProQinase GmbH (Freiburg, Germany) using ATF2 as a substrate.

^c IC_{50} of p38 α/IC_{50} of ALK5.

^d Luciferase activity was determined at a concentration of 100 nM of inhibitor.

^e Activity is given as the mean ± SD of three independent experiments run in triplicate relative to control incubations with DMSO vehicle.

tuted compound **14w** (IC_{50} = 2.12 nM) and 3,5-(OMe)₂ substituted compound **14ae** (IC_{50} = 2.49 nM) displayed slightly more potent ALK5 inhibition than the **14a**.

Contrary to the pyrazoles **14a–ae** possessing a phenycarbothioamido moiety, the pyrazoles **16a** ($IC_{50} = 39.47$ nM) and **16b** ($IC_{50} = 95.70$ nM) possessing a 4-piperidinylcarbothioamido moiety were 14-fold and 34-fold less potent in ALK5 inhibition than the **14a**. This result may suggest us that the binding region for the phenyl ring of **14a–ae** or piperidinyl ring of **16a** and **16b** in ATP binding site of ALK5 is rather planar. The compounds **21a–c** having a methyl substituent at the 2-position of [1,2,4] triazolo[1,5-*a*]pyridin-6-yl moiety displayed much lower ALK5 activity compared to the unsubstituted ones, thus, **21a** (IC_{50} = 102.00 nM), **21b** (IC_{50} = 85.30 nM), and **21c** (IC_{50} = 66.80 nM) were 36-fold, 19-fold, and 19-fold less potent than the **14a**, **14h** (IC_{50} = 4.50 nM), and **14i** (IC_{50} = 3.45 nM), respectively. The pyrazole **14n** showed the most potent ALK5 inhibitory activity in this series of compounds, and was 95-fold and 30-fold more potent than **1** (IC_{50} = 54.40 nM) and **6** (IC_{50} = 17.20 nM), respectively.

To evaluate TGF- β -induced downstream transcriptional activation to ALK5 signaling, cell-based luciferase activity of **14a–ae**, **16a**, **16b**, and **21a–c** was measured using HaCaT cells permanently transfected with p3TP-luciferase reporter construct at a concentra tion of 100 nM (Table 1). The p3TP-luciferase reporter construct contains three Ap-1 binding elements and the plasminogen-activator inhibitor-1 (PAI-1) promoter.⁴¹ Similar to kinase assay, all the pyrazoles **14a–ae** significantly inhibited the luciferase activity, thus, showing 89–96% inhibition except the *o*-Me substituted compound **14t** (79% inhibition). But, the pyrazoles **16a** and **16b** showed no significant ALK5 inhibition (<20% inhibition), and **21a–c** showed only modest ALK5 inhibition (36–47% inhibition). The competitor compounds **1** and **6** showed 66% and 80% inhibition in this assay, respectively.

The kinase domain of p38 α MAP kinase is known to be one of the most homologous to that of ALK5,⁴² therefore, it was chosen to examine the selectivity profile of this series of compounds. The pyrazoles **14a–ae** and **21a–c** possessing a phenycarbothioamido moiety did not inhibit p38 α MAP kinase efficiently, showing IC₅₀ values of >1450 nM, whereas the pyrazoles **16a** (IC₅₀ = 496 nM) and **16b** (IC₅₀ = 598 nM) possessing a 4-piperidinylcarbothioamido moiety were more inhibitory than the **14a–ae** and **21a–c**. The *p*-OMe substituted compound **14n** was the most selective in this series of compounds, showing a selectivity index of 11158 that is much higher than those of **1** (11) and **6** (28). It is noteworthy that the compound **14n**⁴³ is the most potent and selective ALK5 inhibitor reported to date.

In this Letter, a series of 1-substituted-3-(6-methylpyridin-2yl)-4-([1,2,4]triazolo[1,5-*a*]pyridin-6-yl)pyrazoles having a thioamido linkage between a pyrazole ring and a phenyl ring or a piperidinyl ring has been prepared and evaluated for their ALK5 inhibitory activity in an enzyme assay and in a cell-based luciferase reporter assay. It has been proved that incorporation of the [1,2,4]triazolo[1,5-*a*]pyridin-6-yl moiety and phenycarbothioamido moiety at the 4- and 1-positions of the pyrazole ring, respectively, significantly increased both ALK5 inhibitory activity and selectivity. The most potent compound **14n** inhibited ALK5 phosphorylation with IC₅₀ value of 0.57 nM and showed 94% inhibition at 100 nM in a luciferase reporter assay using HaCaT cells permanently transfected with p3TP-luc reporter construct. The selectivity index of **14n** against p38 α MAP kinase is 11158 that is much higher than those of **1** (11) and **6** (28).

Acknowledgment

This work was supported by RP-Grant 2010 of Ewha Womans University.

References and notes

- 1. Heldin, C. H.; Miyazono, K.; Ten Dijke, P. Nature 1997, 390, 465.
- 2. Shi, J.; Massague, J. Cell 2003, 113, 685.
- 3. Massague, J. Nat. Rev. Mol. Cell Biol. 2000, 1, 169.
- 4. Derynck, R.; Zhang, Y. E. Nature 2003, 425, 577.
- 5. Wang, W.; Koka, V.; Lan, H. Y. Nephrology 2005, 10, 48.
- 6. Lim, H.; Zhu, Y. Z. Cell. Mol. Life Sci. **2006**, 63, 2584.
- Gu, L.; Zhu, Y.-J.; Yang, X.; Guo, Z.-J.; Xu, W.-B.; Tian, X.-L. Acta Pharmacol. Sin. 2007. 28, 382.

- 8. Shek, F. W.; Benyon, R. C. Eur. J. Gastroenterol. Hepatol. 2004, 16, 123.
- 9. Bierie, B.; Moses, H. L. Nat. Rev. Cancer 2006, 6, 506.
- 10. Rane, S. G.; Lee, J.-H.; Lin, H.-M. Cytokine Growth Factor Rev. 2006, 17, 107.
- 11. Dong, M.; Blobe, G. C. Blood 2006, 107, 4589.
- 12. Byfield, S. D.; Major, C.; Laping, N. J.; Roberts, A. B. Mol. Pharmacol. 2004, 65, 744.
- Grygielko, E. T.; Martin, W. M.; Tweed, C.; Thornton, P.; Harling, J.; Brooks, D. P.; Laping, N. J. J. Pharmacol. Exp. Ther. 2005, 313, 943.
- De Gouville, A.-C.; Boullay, V.; Krysa, G.; Pilot, J.; Brusq, J.-M.; Loriolle, F.; Gauthier, J.-M.; Papworth, S. A.; Laroze, A.; Gellibert, F.; Huet, S. Br. J. Pharmacol. 2005, 145, 166.
- Ge, R.; Rajeev, V.; Ray, P.; Lattime, E.; Rittling, S.; Medicherla, S.; Protter, A.; Murphy, A.; Chakravarty, J.; Dugar, S.; Schreiner, G.; Barnard, N.; Reiss, M. *Clin. Cancer Res.* **2006**, *12*, 4315.
- Kapoun, A. M.; Gaspar, N. J.; Wang, Y.; Damm, D.; Liu, Y.-W.; O'Young, G.; Quon, D.; Lam, A.; Munson, K.; Tran, T.-T.; Ma, J. Y.; Murphy, A.; Dugar, S.; Chakravarty, S.; Protter, A. A.; Wen, F.-Q.; Liu, X.; Rennard, S. I.; Higgins, L. S. *Mol. Pharmacol.* **2006**, *70*, 518.
- 17. Mundla, S. R. PCT Int. Appl. WO 2007018818 A1, 2007.
- 18. Kim, D.-K.; Kim, J.; Park, H.-J. Bioorg. Med. Chem. Lett. 2004, 14, 2401.
- 19. Kim, D.-K.; Kim, J.; Park, H.-J. Bioorg. Med. Chem. 2004, 12, 2013.
- 20. Kim, D.-K.; Jang, Y.; Lee, H. S.; Park, H.-J.; Yoo, J. J. Med. Chem. 2007, 50, 3143.
- 21. Kim, D.-K.; Choi, J. H.; An, Y. J.; Lee, H. S. Bioorg. Med. Chem. Lett. 2008, 18, 2122.
- 22. Kim, D.-K.; Jung, S. H.; Lee, H. S.; Dewang, P. M. Eur. J. Med. Chem. 2009, 44, 568.
- 23. Dewang, P. M.; Kim, D.-K. Bioorg. Med. Chem. Lett. 2010, 20, 4228.
- Kim, D.-K.; Lee, Y.-I.; Lee, Y. W.; Dewang, P. M.; Sheen, Y. Y.; Kim, Y. W.; Park, H.-J.; Yoo, J.; Lee, H. S.; Kim, Y.-K. Bioorg. Med. Chem. 2010, 18, 4459.
- Kim, Y. W.; Kim, Y. K.; Lee, J. Y.; Chang, K. T.; Lee, H. J.; Kim, D.-K.; Sheen, Y. Y. Xenobiotica 2008, 38, 325.
- 26. Kim, Y. W.; Kim, Y. K.; Kim, D.-K.; Sheen, Y. Y. Xenobiotica 2008, 38, 451.
- Moon, J.-A.; Kim, H.-T.; Cho, I.-S.; Sheen, Y. Y.; Kim, D.-K. Kidney Int. 2006, 70, 1234.
- Luo, J.; Ho, P. P.; Buckwalter, M. S.; Hsu, T.; Lee, L. Y.; Zhang, H.; Kim, D.-K.; Kim, S.-J.; Gambhir, S. S.; Steinman, L.; Wyss-Coray, T. J. Clin. Invest. 2007, 117, 3306.
- Ryu, J.-K.; Piao, S.; Shin, H.-Y.; Choi, M. J.; Zhang, L. W.; Jin, H.-R.; Kim, W. J.; Han, J.-Y.; Hong, S. S.; Park, S. H.; Lee, S.-J.; Kim, I.-H.; Lee, C. R.; Kim, D.-K.; Mamura, M.; Kim, S.-J.; Suh, J.-K. J. Sex. Med. 2009, 6, 1284.
- Lee, G. T.; Hong, J. H.; Mueller, T. J.; Watson, J. A.; Kwak, C.; Sheen, Y. Y.; Kim, D.-K.; Kim, S. J.; Kim, I. Y. J. Urol. 2008, 180, 2660.
- Long, L.; Crosby, A.; Yang, X.; Southwood, M.; Upton, P. D.; Kim, D.-K.; Morrell, N. W. Circulation 2009, 119, 566.
- Kim, J. H.; Song, H.-Y.; Park, J.-H.; Yoon, H.-J.; Park, H. G.; Kim, D.-K. Radiology 2010, 255, 75.
- Tojo, M.; Hamashima, Y.; Hanyu, A.; Kajimoto, T.; Saitoh, M.; Miyazono, K.; Node, M.; Imamura, T. Cancer Sci. 2005, 96, 791.
- Lee, W.-C.; Sun, L.; Chuaqui, C.; Cornebise, M.; Singh, J.; Shan, F. PCT Int. Appl. WO 2006026305 A1, 2006.
- 35. Dodic, N.; Donche, F.; Gellibert, F. J. PCT Int. Appl. WO 2004111046 A2, 2004.
- Lee, W.-C.; Sun, L.; Shan, F.; Chuaqui, C.; Zheng, Z.; Petter, R. C. PCT Int. Appl. WO 2003087304 A2, 2003.
- Sun, L.; Niu, D.; Shan, F.; Lee, W.-C.; Feng, X. PCT Int. Appl. WO 2009009059 A1, 2009.
- Gerlach, M.; Seipelt, I.; Guenther, E.; Polymeropoulos, E.; Schuster, T.; Claus, E. PCT Int. Appl. WO 2008138878 A2, 2008.
- 39. Chan, C. H.; Shish, F. J.; Liu, K. C.; Chern, J. W. Heterocycles 1987, 26, 3193.
- 40. Moran, D. B.; Morton, G. O.; Albright, J. D. J. Heterocycl. Chem. 1986, 23, 1071.
- Wrana, J. L.; Attisano, L.; Carcamo, J.; Zentella, A.; Doody, J.; Laiho, M.; Wang, X. F.; Massague, J. Cell 1992, 71, 1003.
- Eyers, P. A.; Craxton, M.; Morrice, N.; Cohen, P.; Goedert, M. Chem. Biol. 1998, 5, 321.
- 43. **14n**: mp 99.4 °C; IR (KBr) 3282, 2925, 1515, 1179 cm⁻¹; ¹H NMR (CDCl₃): δ 2.50 (s, 3H), 3.86 (s, 3H), 7.00 (m, 2H), 7.19 (dd, 1H, *J* = 7.2, 1.2 Hz), 7.63–7.69 (m, 5H), 7.73 (dd, 1H, *J* = 9.2, 0.8 Hz), 8.36 (s, 1H), 8.96 (dd, 1H, *J* = 1.6, 0.8 Hz), 9.00 (s, 1H), 10.64 (br s, 1H); HRMS-ESI: *m*/z [M+H]⁺ calcd for C₂₃H₂₀N₇OS: 442.1445, found 442.1447.