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Palladium-catalyzed cascade cyclization of bromoenynamides 

equipped with an additional alkyne or ynamide substituent 

affords azatricyclic products. Using 5- to 7-membered ring 

tethers, this chemistry offers a regiospecific route to highly-10 

functionalized azacycles. Elaboration to the trikentrin B 

skeleton is achieved from the arylsilane cyclization products. 

The trikentrin and herbindole families of natural products, 

isolated from the marine sponges Trikentrion flabelliforme[1a] and 

Axinella sp.,[1b] display a range of bioactivities including 15 

antimicrobial, antifeedant and cytotoxic properties. The heavily-

substituted tricyclic indole systems which feature in these 

compounds (e.g. cis-trikentrin B and herbindole B, Scheme 1) 

represent a particular synthetic challenge that has inspired a 

number of elegant solutions.1 20 

 In recent work, we have developed a number of routes to 

azabicycles from ynamides, including via ynamide 

carbopalladation.2 We have also reported a strategy to access the 

tricyclic 7,6,5-CDE ring cores of rubriflordilactones A and B, 

which contain penta- and tetrasubstituted arenes respectively, 25 

through palladium-catalyzed cascade cyclization of 

bromoenediynes.3 We noted that the combination of these two 

methodologies could provide access to the tricyclic indole core of 

the trikentrins, via cyclization of a bromoenynamide equipped 

with a remote alkyne (1→2, Scheme 1). The construction of 30 

fused ring arenes in this manner4 has rarely been employed in 

synthetic endeavours,3 and in the context of ynamides offers a 

useful alternative to the elegant cyclotrimerization methodology 

pioneered by Witulski,5 which has recently been applied to the 

herbindole system.1c This sequenced carbopalladation strategy 35 

offers advantages over intramolecular cyclotrimerization, where 

long tethers restrict the formation of larger rings, presumably due 

to competing intermolecular reactions.6 Here we describe the 

development of this novel ynamide chemistry,7 and its 

application to a number of azatricyclic systems, including aza- 40 

and benzazepine trikentrin analogues. Elaboration to the bis-

desmethyl-trikentrin B framework is also described. 

 We first set about the synthesis of a series of bromoenynamide 

alkynes suitable for cyclization, through the preparation of 

appropriate sulfonamide and bromoalkyne precursors (Scheme 45 

2). The bromoalkenyl sulfonamides 3a and 3b were prepared 

from alkynes 4a and 4b via bromoboration / protodeborylation 

(with simultaneous Boc deprotection), whilst bromoalkynes 5a  

 
Scheme 1 cis-Trikentrin B, herbindole B, and the general 50 

bromoenynamide cyclization strategy. 

and 5b were synthesized from 1,6-heptadiyne by monosilylation 

then bromination. Both trimethylsilyl and benzyldimethylsilyl 

groups were installed, which we anticipated would enable various 

strategies for the attachment of trikentrin-like sidechains 55 

following cyclization. These building blocks were coupled using 

Hsung’s copper-catalyzed methodology for ynamide formation,8 

which provided ynamides 1a-c in moderate to good yield, albeit 

 
Scheme 2 Preparation of ynamide and bis-ynamide cyclization substrates. 60 
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Table 1 Bromoenynamide-alkyne Cascade Cyclizations.a 

 

Entry Substrate 

Catalyst 

loading 

(mol%) Product Yield (%)
b
 

1 

2 

3
 

1a 

10 

5 

5
c
 

 

90 

78 

88
 

4 

5 
1b 

10 

5 

 

90 

73 

6 

7 
1c 

10 

10
c
 

  

–
d 

78 

8 

9 

10 

1d 

10 

5 

5
c 

 

49 

52 

70 

a Reaction concentration 0.017 M unless indicated otherwise. b Isolated 

yield. c Reaction concentration 0.16 M. d Complex mixture. 

accompanied by a degree of desilylation in the case of TMS-5 

substituted diyne 5a. To further extend the cyclization 

methodology, we targeted a substrate featuring two ynamides, 

which would lead to an aza-trikentrin (pyrroloindoline) 

framework. The bis-ynamide 1d was readily prepared in four 

steps from 4a by bromination / carbamate deprotection (to afford 10 

the sulfonamide 6), followed by sequential Hsung couplings – 

firstly with 1-bromo-oct-1-yne (used in excess to minimize 

intermolecular homocoupling of 6), then with sulfonamide 3a. 

 With a selection of substrates in hand, the cascade cyclizations 

were investigated (Table 1). Using our previously reported 15 

conditions (10 mol% Pd(PPh3)4, Et3N, 0.017 M in MeCN, 

80 °C),3 we were pleased to obtain the 5,6,5-tricyclic trikentrin 

frameworks 2a and 2b in excellent yields (90%, Entries 1, 4). The 

catalyst loading could be lowered to 5 mol% with a slight 

reduction in yield (Entries 2, 5); however, by increasing the 20 

concentration (to 0.16 M), catalytic efficiency was restored, with 

2a isolated in 88% yield (Entry 3). 

 Cyclization to the challenging 7,6,5-tricyclic analogue of the 

trikentrin framework was next attempted. At higher catalyst 

loading and dilution, the desired tricycle 2c was obtained as a 25 

component of a complex mixture (Entry 6). However, by 

performing this reaction at higher concentration, 2c was formed 

as the sole product in excellent yield (Entry 7), a result that 

highlights the advantages of the sequenced carbopalladation 

strategy. Finally, diynamide 1d was subjected to the range of 30 

reaction conditions (Entries 8-10). To our delight, tricycle 2d, 

which represents the first example of such a pyrroloindoline 

framework, was isolated in high yield when reacted at the higher 

concentration (70%, Entry 10). 

 With efficient access to azatricycles established, we aimed to 35 

demonstrate the utility of the methodology by preparing a natural 

product analogue – bis-desmethyl-trikentrin B 13 (see Scheme 

3) – from the 5,6,5-indolines 2a or 2b. This required installation 

of the requisite butenyl sidechain, and conversion of the protected 

indoline to the free indole. For the former of these tasks, we 40 

recognised the synthetic value of the silane present in 2a/b, which 

enables a variety of sidechain attachment strategies. We first 

addressed Hiyama cross-coupling of 2b, which offers a direct 

route to the butenyl substituent and is an attractive alternative to 

other coupling methods (e.g. Stille, Suzuki) due to the low 45 

toxicity of silicon and its stability to multistep synthesis.9 To our 

knowledge, no Hiyama couplings between arylbenzyl 

dimethylsilanes and alkenyl halides have been reported, with only 

the reverse process being described (i.e. the coupling of 

alkenylbenzyldimethylsilanes with aryl halides).10 50 

 Standard conditions for the coupling of alkenyl 

benzyldimethylsilanes (TBAF, Pd2dba3•CHCl3 or Pd(dba)2),
10 

using either β-styrenyl iodide 7a or butenyl iodide 7b as the 

halide partner, afforded no cross-coupling product (Entries 1, 2). 

As benzylsilanes are ‘safety-catch’ silanols, and indeed are 55 

hydrolysed to the latter on treatment with TBAF, alternative 

conditions for the coupling of alkenylsilanols11 were also 

investigated, without success (Entry 3). In all of these trials, 

mixtures of silanol, disiloxane, and desilylated arene were 

recovered,12 suggesting that the aryl silanol revealed on 60 

unmasking of the benzylsilane was resistant to transmetallation. 

The addition of Ag2O has been reported by Hiyama to accelerate 

transmetallation,13 and we were delighted to find that the 

coupling of styrenyl iodide 7a under these conditions smoothly 

afforded the styrenyl trikentrin framework 8a (68%). 65 

Disappointingly, only desilylated arene was returned on 

attempted coupling with butenyl iodide 7b, which for this study 

presented an insurmountable limitation.   

 A more classical route to install the butenyl sidechain was thus 

developed (Scheme 3).14 Aryltrimethylsilane 2a was subjected to 70 

a Friedel-Crafts acylation, which proceeded with exclusive ipso- 

selectivity to give ketone 9 (79%). This ketone then underwent a 

high-yielding reduction / dehydration sequence to deliver the 

Table 2 Hiyama Cross-coupling of Arylsilane 2b. 

 75 

Entry 
Alkenyl 

Iodide 
[Pd] cat. (mol %) 

TBAF 

(equiv.) 
Temp (°C) 

Yield 

(%)
a
 

1 7a 
Pd2dba3•CHCl3 (2.5)  

or Pd(dba)2 (5) 
2.2 20→50 –

b 

2 7b Pd2dba3•CHCl3 (2.5) 2.2 20→50 –
 b
 

3 7a (allylPdCl)2 (2.5) 2.2 20→50 –
 b
 

4 7a Pd(PPh3)4 (5), Ag2O
c 

1.1 20 68 

5 7b Pd(PPh3)4 (5), Ag2O
c
 1.1 20 –

d
 

a Isolated yield. b A mixture of silanol, disiloxane, and desilylated arene 

was recovered. c 1.1 equiv. Ag2O. d Desilylated 2b was isolated (67%). 

TsN

Br

XR

n

N
Ts

R

X

Pd(PPh3)4 (5-10 mol%)

(See Table)

Et3N (6 equiv.), MeCN, 

80 °C, 16 h

n

2a-d1a-d

N
Ts

SiMe3

2a

N
Ts

SiMe2Bn

2b

N
Ts

SiMe2Bn

2c

N
Ts

Hex

NTs
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N
Ts

SiMe2Bn

THF, 22 h
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Scheme 3. Synthesis of bis-desmethyl-trikentrin B 

targeted butenyl sidechain (8b). Completion of the synthesis now 

required indoline detosylation and oxidation to reveal the indole 

moiety. However, all attempts to oxidise 8b to the corresponding 5 

sulfonyl indole were unsuccessful, leading mainly to 

degradation.15 Inverting this sequence of events resolved this 

issue; although Mg/MeOH/sonication (which is usually effective 

for such detosylations)2a,16 effected partial deprotection (<25%), 

treatment of 8b with sodium naphthalenide gave the deprotected 10 

indoline 11 with high efficiency. Somewhat surprisingly, 11 

underwent rapid aerobic decomposition, presumably due to the 

indoline-enhanced reactivity of the electron-rich styrene,17 and 

isolation of the pure indoline proved difficult. However, we were 

pleased to find that direct dehydrogenation of the crude indoline 15 

using Pd/C in degassed toluene completed the synthesis, giving 

bis-desmethyl-trikentrin 12 in good yield over the two steps. 

 In conclusion, we have developed a facile method for the 

preparation of azatricycles from bromoalkenyl ynamides. The 

reaction enables formation of five- to seven-membered rings, and 20 

offers an attractive alternative to cyclotrimerization strategies. 

The utility of this chemistry is demonstrated by installation of the 

trikentrin B alkenyl sidechain in a further four steps using 

Friedel-Crafts ipso-substitution of the arylsilane cyclization 

products. As an alternative, we report the first example of an 25 

alkenyl iodide / arylbenzylsilane Hiyama cross-coupling, which 

affords a styrenyl-trikentrin analogue. 

 We thank the EPSRC (EP/H025839/1, CDC; EP/E055273/1, 

Advanced Research Fellowship to E.A.A.), and Syngenta Ltd. for 

a studentship (to R.L.G.). 30 
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