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The enhancement of cognitive processes and the improve-
ment of memory by drugs or natural products (sometimes
called brain doping) is increasingly performed in our knowl-
edge-based society and is, therefore, a controversial topic.[1]

The identification of such cognitive enhancers is the goal of
many research groups,[2] in particular as such drugs could
open up new therapeutic avenues for the treatment of
neurodegenerative diseases.[3] A hallmark of such diseases is
neuritic atrophy, and compounds inducing or enhancing
neurite outgrowth present interesting lead structures.[3]

During our research efforts on the synthesis and biological
evaluation of such compounds,[4] we became interested in
cyrneine A (1), which enhances neurite outgrowth in pheo-
chromocytoma cells.[5] Detailed investigations on this natural
product suggested a Rac1-dependent mechanism.[6] Herein,
we report the first total synthesis of cyrneine A (1).

Cyrneine A (1) features a tricyclic 5-
6-7 ring system containing a hexatrienal
unit. In addition, the quaternary stereo-
genic centers at C6 and C9 with the
angular methyl groups pose a synthetic
challenge, which is complemented by
the two neighboring stereogenic centers.
Cyrneine A (1) is a member of the

cyathane diterpenes, of which several successful synthetic
strategies have been published.[7] We opted for a convergent
synthetic strategy, which would join the five- and seven-
membered rings through a reductive Knoevenagel condensa-
tion and a Heck cylization. Additional interesting steps would
include a Yamamoto ring expansion reaction and a palla-
dium-mediated reductive carbonylation.

The total synthesis of cyrneine A (1) started with the
preparation of the five-membered fragment 5, which already
included the correct functionalization both with regard to the
stereocenters as well as for the subsequent Knoevenagel and
Heck reactions (Scheme 1). (�)-Carvone was reduced
according to a literature procedure,[8] and the resulting OH
function was protected with a TBS group. The exocyclic
double bond was easily reduced by H2 and PtO2, and the
protected alcohol 2 was obtained in 96 % yield over three
steps. The ring contraction to the five-membered substrate
was achieved by ozonolysis[9] and reductive work-up (Zn in
acetic acid) via 3, and a subsequent cyclization mediated by
piperidinium acetate. Reduction of the resulting cyclopentene
carboxyaldehyde to the alcohol followed by transetherifica-
tion[10] gave vinyl ether 4. The quaternary stereogenic center
was established by a Claisen rearrangement[10] in a sealed tube
(toluene, 175 8C), and the resulting aldehyde 5 was obtained
in 81% yield. Thus, access to this building block was secured
in 8 steps and 55 % calculated overall yield.

The Knoevenagel condensation of the aldehyde 5 with
cyclohexa-1,3-dione was readily carried out in the presence of
l-proline as the catalyst. The unsaturated intermediate was
reduced in situ by the Hantzsch ester to prevent multiple
additions of the nucleophile.[11] Interestingly, the stability of
the product from this sequence is limited and, therefore, the
intermediate was alkylated immediately with methyl iodide
and DBU. The resulting diketone 6 was characterized by X-
ray crystal-structure analysis.[12] It was found after tedious
experimentation that the introduction of the oxygen func-
tionality for the Heck reaction was best carried out at this
stage: Ozonolysis gave the triketone 7 (X-ray crystal struc-
ture).[12] After scouting multiple routes, we realized that the
stereoselective installment of the quaternary center at C6 was
only feasible at this stage. The diastereoselective reduction of
the triketone 7 under Luche conditions[13] resulted in high
regioselectivity, and the 5R,6R diastereoisomer 8 was
obtained as the major product in a ratio of 4.25:1, with none
of the unlike diastereoisomers observed (for details, see the
Supporting Information).

The selectivity of this transformation is very remarkable,
as only one carbonyl group of the triketone is selectively
attacked from one face. The cyclopentanone C=O group
appears to be sterically too hindered for a successful attack.
The relative facial selectivity resulting in the like configu-
ration can be explained by the use of Luche reagents.[14] The
preference for one carbonyl group of the cyclohexadione
(regioselectivity) must reside in the presence of the stereo-
genic centers of the cyclopentane ring, and the transfer of
stereochemical information over at least four bonds could, for
example, be explained by transient complexation/cyclization
via the C4=O group during the course of the reaction.[15]
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The transformation of alcohol 8 to the corresponding
mesylate was achieved in high yield, and the absolute
configuration of all the stereogenic centers was successfully
established by X-ray crystal-structure analysis.[12] Elimination
to the cyclohexenone 9 followed by reduction and protection
gave the intermediate 10, which could be accessed in 100 mg
amounts.

The precursor 11 for the Heck cyclization[7b–d, 16] could be
obtained from the ketone 10 : Preparation of the enol triflate
in 83 % yield was followed by a selective oxidation with CrO3

to the a,b-unsaturated ketone 11. The cyclization was then
carried out by a palladium-mediated Heck reaction, and the
constitution and configuration of the tricyclic 2,4-dienone 12
was again determined by X-ray crystal-structure analysis.[12]

The ring expansion was carried out by a two-step
procedure according to Taguchi, Yamamoto, and Nozaki[17]

(Scheme 2), as other methods (such as, for example,
TMSCHN2) were not successful. Reaction of the precursor
12 with dibromomethane and LiTMP gave, after addition, the
dibromo alcohol 13, which gave, after Br/Li exchange (BuLi,
�90 8C) and subsequent rearrangement, the ring-expanded
cycloheptenone 14 in high yield.

The end game in the synthesis of cyrneine A (1) involved
the introduction of the C12-aldehyde group. The Shapiro
reaction proved not to be successful for this substrate:
Although the hydrazone was formed, reaction with BuLi
did not yield any product. In contrast, the reductive,

palladium-catalyzed carbonylation[18] of the enol triflate 15
was successful and the protected cyrneine A derivative 16 was
obtained in 77 % yield. The cleavage of the two TBS groups
proceeded smoothly and sequentially in one pot. Purification
of the product by flash chromatography finally resulted in
synthetic cyrneine A (1) in 84% yield. The spectroscopic data
of the synthetic sample matched the published data for the
natural product.[5]

In addition, we obtained crystals of the target compound
(m.p. 192–195 8C), which were suitable for X-ray crystal-
structure analysis. This analysis definitely established the
structure of cyrneine A (1) and allowed for the unambiguous
assignment of all the stereogenic centers. This analysis also
revealed interesting insights about certain properties of 1. The
hydroxy group at C14 hovers over the cycloheptadiene
system, and the steric bulk of the tricyclic skeleton forces
the C6-diene unit out of planarity, which might imply that the
characteristic hexatrienal unit of 1 would possess reduced
reactivity toward nucleophiles.

We have reported herein the first total synthesis of
cyrneine A (1). Salient features of this route include a reduc-
tive Knoevenagel/Heck cyclization strategy, a remarkably
regioselective reductive desymmetrization, a ring expansion
by a carbene rearrangement, as well as a reductive, palladium-
mediated carbonylation. Crystal-structure analysis of syn-
thetic cyrneine A (1) led to the definitive establishment of the
structure of this natural product. Biological investigations

Scheme 1. Reaction conditions: a) LiAlH4, Et2O, �78 8C, 15 min; b) TBSCl, imidazole, CH2Cl2, RT, 1.5 h; c) PtO2/H2, THF, RT, 4 h, 96% (over
3 steps); d) O3, Zn/AcOH, CH2Cl2/MeOH (5:1), �78 8C!RT, 1 h, 89%; e) piperidine, AcOH, Et2O, 70 8C, 20 h, 92 %; f) NaBH4, MeOH, 0 8C,
15 min, 88 %; g) Hg(OAc)2, ethyl vinyl ether, 60 8C, 24 h, 94 %; h) toluene, 175 8C, 16 h, 81 %; i) l-proline, Hantzsch ester, CH2Cl2, 3 h, RT; j) MeI,
DBU, LiI, THF, 14 h, 75 8C, 73% (over 2 steps); k) O3, CH2Cl2, (Me)2S, �78 8C, 1 h, 83%; l) CeCl3·7H2O, NaBH4, THF/MeOH (1:5), �78 8C,
20 min, 68 %; m) (MeSO2)2O, pyridine, DMAP, 5 h, RT, 88 %; n) LiBr, Li2CO3, DMF, 140 8C, 1 h, 79%; o) NaBH4, MeOH, 0 8C, 20 min, 86%;
p) TBSOTf, 2,6-lutidine, CH2Cl2, 2 h, RT, 85 %; q) KHMDS, PhNTf2, THF, �78 8C, 3 h, 83%; r) CrO3, DMP, CH2Cl2, 18 h, RT, 71%; s) Pd(OAc)2,
TBABr, PPh3, K2CO3, toluene, 120 8C, 1 h, 63%. TBSCl= tert-butyldimethylsilyl chloride, RT = room temperature, DBU = 1,8-diazabicyclo[5.4.0]-
undec-7-ene, DMAP= 4-(dimethylamino)pyridine, KHMDS=potassium bis(trimethylsilyl)amide, DMP= 3,5-dimethylpyrazole, TBABr = tetra-n-
butylammonium bromide, Tf = trifluoromethanesulfonyl.
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regarding the Rac1-dependent induction of neurite outgrowth
are currently underway.
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