Tetrahedron 68 (2012) 8869-8874

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

One-pot two-step synthesis of 1-position arylated 1,3-disubstituted isoquinoline *N*-oxides

Qiuping Ding*, Dan Wang, Xiaoyan Sang, Yuqing Lin, Yiyuan Peng*

Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China

ARTICLE INFO

Article history: Received 10 June 2012 Received in revised form 6 August 2012 Accepted 14 August 2012 Available online 21 August 2012

Keywords: 2-Alkynylbenzaldoximes Isoquinoline N-oxides Aryl halides Arylation

ABSTRACT

A one-pot two-step reaction of 2-alkynylbenzaldoximes with aryl halides has been developed, which offers the 1-position arylated 1,3-disubstituted isoquinoline *N*-oxides in moderate to good yields in most cases. The isoquinoline *N*-oxide intermediate was prepared in situ without isolation.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Diversity-oriented synthesis¹ (DOS) is an emerging field involving the synthesis of combinatorial libraries of diverse small molecules. One important theme in DOS is the development of tandem reactions² for the efficient construction of complex structures in a single step from simple starting materials. Among the tandem reactions, much attention has been paid to the multicatalytic tandem processes,^{3,4} the transformation where one or more catalysts are involved in at least two distinct catalytic bond forming steps in one-pot, without isolation of intermediate species. Multicomponent reactions (MCRs) in one-pot for DOS is another promising strategy.⁵ Recently, one of us has reported multicatalytic tandem processes for the synthesis of tetrahydro-1,2-oxazine fused 1,2-dihydroisoquinolines^{4g} and MCRs for the synthesis of 1,2dihydroisoquinolines^{5d} in one-pot.

The chemistry of 2-alkynylbenzaldoximes **1** mediated with transition metals, Lewis acids or electrophiles to generate isoquinoline *N*-oxides, which then undergoes various transformations to afford versatile useful isoquinoline derivatives has been well studied by several groups such as those of Wu^{4g,6} and Shin.⁷ For instance, Wu and co-workers disclosed the Lewis acid- or electrophiles-mediated tandem reactions of 2-alkylbenzaldoximes, leading to the library of isoquinoline derivatives.^{4g,6}

As a privileged fragment, isoquinoline core shows remarkable biological activities.⁸ Among these, isoquinoline *N*-oxide as one of isoquinoline derivatives possesses its own properties, such as to be used as a chiral scaffold in Lewis basic organocatalysis⁹ or charge-transfer and metal (Li⁺/Mg²⁺) sensor and radical initiator for atom-transfer radical polymerization.¹⁰ In addition, isoquinoline *N*-oxide can be readily reduced to the corresponding isoquinoline by Pd/C with ammonium formate at room temperature in good to excellent yield.

Recently, efficient methods for the synthesis of 1,3-disubstituted isoquinoline *N*-oxide have been demonstrated.^{4g,6} However, only scattered examples of arylation in 1-position have been described and the isoquinoline *N*-oxides must be prepared and isolated in advance by oxidation of isoquinoline.¹¹ For example, Chang and coworkers disclosed Pd-catalyzed direct arylation of isoquinoline *N*-oxides using unactivated benzene.^{11a} Fagnou reported the palladium-catalyzed direct arylation of isoquinoline *N*-oxides.^{11d} Therefore, developing efficient and combinatorial synthetic methods for construction of functionalized isoquinoline *N*-oxides is still desirable. Herein, we report an efficient and general method for the preparation of 1-position arylated 1,3-disubstituted isoquinoline *N*-oxides via one-pot two-step process: Ag-catalyzed intramolecular addition–cyclization/Pd-catalyzed direct arylation of 2-alkynylbenzaldoximes **1**.

^{*} Corresponding authors. Tel./fax: +86 791 88120396; e-mail addresses: dqpjxnu@gmail.com (Q. Ding), yiyuanpeng@yahoo.com (Y. Peng).

^{0040-4020/\$ –} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2012.08.039

2. Results and discussions

As described above,^{6e,7b} isoquinoline *N*-oxide **A** could be easily obtained via AgOTf-catalyzed cyclization of 2-alkynylbenzaldoxime 1a at room temperature. Then the reaction of 1a with 2a was selected for optimization of reaction conditions. At the outset, various bases (K₂CO₃, Cs₂CO₃, NaHCO₃, DABCO, and DBU) were employed in the reaction. To our delight, we observed the formation of the desired cross-coupling product **3a** in 28% yield, when K₂CO₃ was employed in the reaction in the presence of AgOTf (5 mol %), $Pd(OAc)_2$ (5 mol %), and PCy_3 (10 mol %) in toluene at 110 °C (Table 1, entry 1). Product of arene homo-coupling was the main side product. Other bases such as Cs₂CO₃, NaHCO₃, DABCO, or DBU were unreactive (Table 1, entries 2–5). As described by Fagnou,^{11b–d} palladium-catalyzed direct arylation of pyridine, diazine, and thiazole N-oxides occurred in high yield in the presence of K₂CO₃. Subsequent investigations showed that the result could be dramatically improved in the presence of HBF₄ (10 mol %) as additive (52% yield, Table 1, entry 6). At first, we think AgBF₄ was prepared in situ by HBF₄-mediated and then used as a catalyst in the reaction. Absence of HBF₄, using AgBF₄ instead of AgOTf as catalyst, desired product could not be found. Then the role of HBF₄ was deemed to form complex PR₃–HBF₄, which promoted the reaction.^{11b–d} No product was generated when the reaction was employed in polar solvent such as DMF, DMA, DMSO, and 1,4-dioxane (Table 1, entries 7–10). We next studied the reactivity in the presence of a number of structurally varied ligands. We observed that on changing the ligand from tricyclohexylphosphine (L1) to tri-*p*-tolylphosphine (L2) to 2-(di-*tert*-butylphosphino)biphenyl (L3, JohnPhos), the yield remained almost the same (Table 1, entries 6, 11, and 12). An unsatisfactory reactivity was observed in the case of using the 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (L4, XantPhos) ligand (Table 1, entry 13). Different palladium(II) precatalysts were also employed in the reaction. PdCl₂ was proved to be the most efficient and the corresponding product **3a** was afforded in 67% yield (Table 1, entry 14). Inferior results were observed when other palladium(II) complexes [PdCl₂(PhCN)₂, PdCl₂(CH₃CN)₂, and PdCl₂(PPh₃)₂] were employed in the reaction (Table 1, entries 15–17).

With this promising result in hand, we started to investigate the scope of this reaction under optimized conditions [AgOTf (5 mol %), PdCl₂ (5 mol %), JohnPhos (10 mol %), HBF₄ (10 mol %), K₂CO₃ (2.0 equiv), toluene, 110 °C]. A variety of 1,3-disubstituted isoquinoline *N*-oxides were generated under the standard experimental conditions (Tables 2 and 3). As shown in Table 2, we found that the optimized conditions allowed us to perform a broad range of arylation reactions of isoquinoline *N*-oxide **A** with various aryl halides, including aryl bromides and aryl iodides with electron-withdrawing or electron-donating groups on the phenyl rings in one-pot. The expected 1,3-diarylated isoquinoline *N*-oxides were

Table 1

Optimization of reaction conditions^a

	N OH Ph	$\frac{1}{CH_2Cl_2, rt} \begin{bmatrix} 4gOTf (5 mol\%) \\ CH_2Cl_2, rt \end{bmatrix}$	$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	Br 2a CH ₃ Pd] (5 mol%), L (10 mol%) IBF ₄ (10 mol%), base, soluene, 110 °C	CH ₃ + O 3a	
Entry	[Pd]	Ligand	Additive	Base	Solvent	Yield ^b (%)
1	Pd(OAc) ₂	L1	_	K ₂ CO ₃	Toluene	28
2	Pd(OAc) ₂	L1	_	Cs ₂ CO ₃	Toluene	_
3	Pd(OAc) ₂	L1	_	NaHCO ₃	Toluene	_
4	Pd(OAc) ₂	L1	_	DABCO	Toluene	_
5	Pd(OAc) ₂	L1	_	DBU	Toluene	_
6	Pd(OAc) ₂	L1	HBF ₄	K ₂ CO ₃	Toluene	52
7	$Pd(OAc)_2$	L1	HBF ₄	K ₂ CO ₃	DMF	—
8	Pd(OAc) ₂	L1	HBF ₄	K ₂ CO ₃	DMA	—
9	Pd(OAc) ₂	L1	HBF ₄	K ₂ CO ₃	DMSO	—
10	$Pd(OAc)_2$	L1	HBF ₄	K ₂ CO ₃	1,4-Dioxane	_
11	$Pd(OAc)_2$	L2	HBF ₄	K ₂ CO ₃	Toluene	51
12	Pd(OAc) ₂	L3	HBF ₄	K ₂ CO ₃	Toluene	54
13	Pd(OAc) ₂	L4	HBF ₄	K ₂ CO ₃	Toluene	22
14	PdCl ₂	L3	HBF ₄	K ₂ CO ₃	Toluene	67
15	$PdCl_2(PhCN)_2$	L3	HBF ₄	K ₂ CO ₃	Toluene	18
16	$PdCl_2(CH_3CN)_2$	L3	HBF ₄	K ₂ CO ₃	Toluene	31
17	$PdCl_2(PPh_3)_2$	L3	HBF_4	K ₂ CO ₃	Toluene	49

^a Reaction conditions: 2-(phenylethynyl)benzaldehyde oxime **1a** (0.6 mmol, 2.0 equiv), AgOTf (5 mol %), 1-bromo-3-methylbenzene **2a** (0.3 mmol), [Pd] 5 mol %, ligand (10 mol %), additive (10 mol %), base (2.0 equiv).

^b Isolated yield of **3a** based on **2a**.

Table 2

One-pot two-step addition-cyclization/arylation reactions of oxime **1a** and various aryl halides **2**^a

^a Reaction conditions: 2-(phenylethynyl)benzaldehyde oxime **1a** (0.6 mmol, 2.0 equiv), AgOTf (5 mol %), aryl halide **2** (0.3 mmol), PdCl₂ 5 mol %, JohnPhos (10 mol %), HBF₄ (10 mol %), K₂CO₃ (2.0 equiv).

^b Isolated yield of **3** based on **2**.

obtained in moderate to good yields in most cases (Table 2). For instance, 2-alkynylbenzaldoxime **1a** reacted with 1-bromo-3-nitrobenzene **2c** leading to the desired product **3c** in 77% yield (Table 2, entry 3), while a 78% yield of product **3f** was obtained when 1-iodo-4-methylbenzene **2f** was employed in the reaction (Table 2, entry 6).

Then we investigated the substrates scope of the one-pot multicatalytic cascade reactions between aryl halides 2 and substituted 2-alkynylbenzaldoxime 1. The results were shown in Table 3. To our delight, the one-pot Ag-catalyzed addition-cyclization/Pd-catalyzed arylation reaction occurred with a range of 2alkynylbenzaldoxime **1** (R¹=aryl), including phenyl and phenyl rings substituted with electron-rich and electron-poor groups, leading to the corresponding product in moderate to good yields in most cases. For instance, 1c reacted with 2a to give the desired 1aryl isoquinoline *N*-oxide **3j** in 71% yield. When R¹ was changed to alkyl group, the results are not very well. The reactions can occur smoothly to afford the corresponding products in moderate yields, when R¹=cyclopropyl (Table 3, entries 9 and 10). For example, the reaction of compound 1f with 2b furnished the desired product 3q in 42% yield (Table 3, entry 9). To other substituents, such as SiMe₃, H, and ⁿBu (R¹), the reactions could not occur (Table 3, entries 11–13). Subsequently, we were pleased to find that 2alkynylbenzaldoximes 1 with an electron-withdrawing group $(R^2=F)$ were also suitable substrates under the optimized reaction conditions (Table 3, entries 14-18). For instance, reaction of 2alkynylbenzaldoxime 1k and 2f gave rise to the 7-fluoro-3phenyl-1-p-tolylisoquinoline 2-oxide 3w in 92% yield (Table 3, entry 18).

Subsequently, under the standard experimental conditions, we investigated the reaction of isoquinoline N-oxide **A** with vinyl

halide [(*E*)-(2-bromovinyl)benzene], but the desired product wasn't observed (Scheme 1).

In summary, we have described an interesting method for the synthesis of 1-position arylated 1,3-disubstituted isoquinoline *N*-oxide using a one-pot two-step process: Ag-catalyzed intra-molecular addition—cyclization/Pd-catalyzed direct arylation of 2-alkynylbenzaldoximes. The isoquinoline *N*-oxide intermediate was prepared in situ without isolation. These compounds should find wide applications in synthetic and medicinal chemistry both in academia and in industry.

3. Experimental section

3.1. General procedure for one-pot two-step synthesis of 1-position arylated 1,3-disubstituted isoquinoline *N*-oxides from 2-alkynylbenzaldoximes 1 with aryl halides 2

A mixture of 2-alkynylbenzaldoxime **1** (0.6 mmol, 2.0 equiv) and AgOTf (5 mol %) in CH_2Cl_2 (2.0 mL) was stirred at room temperature under nitrogen atmosphere for 2 h, until 2-alkynylbenzaldoxime **1** was completed consumed. The solvent was removed under reduced pressure. A mixture of PdCl₂ 5 mol %, JohnPhos (10 mol %), and HBF₄ (10 mol %) in toluene (2.0 mL) was added to the residue. After 5 min, the mixture of aryl halide **2** (0.3 mmol) and K₂CO₃ (2.0 equiv) was added, and allowed to stir at 110 °C for overnight under nitrogen atmosphere. After completion of the reaction as indicated by TLC, the mixture was cooled to room temperature. The solvent was evaporated, residue was diluted with EtOAc (10 mL), washed with H₂O (10 mL) and brine (10 mL), dried by anhydrous MgSO₄. Evaporation of the solvent followed

Table 3

One-pot two-step addition-cyclization/arylation reactions of oximes 1 and various aryl halides 2^a

$R^{2} \xrightarrow[l]{l} \\ R^{2} \xrightarrow[l]{l} \\ R^{1} \\ R^{1} \\ R^{1} \\ R^{1} \\ R^{2} \xrightarrow[l]{l} \\ R^{2} \xrightarrow[l]{l$													
Entry	1	2	3	Yield ^b %	Entry	1	2	3	Yield ^b %				
1	N ^{-OH} 4-CH ₃ C ₆ H ₄ 1b	2a	3i	67	10	1f	2c	3r	64				
2	N ^{-OH} 4-OCH ₃ C ₆ H ₄ 1c	2a	3j	71	11	"Bu 1g	2a	_	_				
3	1c	2c	3k	45	12	TMS 1h	2a	_	_				
4	1c	2e	31	75	13	H 1i	2a	_	_				
5	A-FC ₆ H ₄ 1d	2a	3m	58	14	F Ph 1i	2a	3s	67				
6 7	1d 1d	2c 2e	3n 3o	66 38	15 16	1j 1j	2b 2c	3t 3u	43 53				
8	N ^{-OH} 3-FC ₆ H ₄ 1e	2e	3p	43	17	F N OH Ph 1 k	2a	3v	81				
9		2b	3q	42	18	1k	2f	3w	92				

^a Reaction conditions: 2-(phenylethynyl)benzaldehyde oxime **1** (0.6 mmol, 2.0 equiv), AgOTf (5 mol %), aryl halide **2** (0.3 mmol), PdCl₂ 5 mol %, JohnPhos (10 mol %), HBF₄ (10 mol %), K₂CO₃ (2.0 equiv).

^b Isolated yield of **3** based on **2**.

purification by column chromatograph over silica gel provided the corresponding product **3**.

3.1.1. 3-Phenyl-1-*m*-tolylisoquinoline 2-oxide **3a**. Yield: 67%; ¹H NMR (400 MHz, CDCl₃) δ 2.35 (s, 3H), 7.23–7.40 (m, 11H), 7.67–7.79 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 124.1, 125.6, 126.9, 127.3, 127.9, 128.3, 128.6, 128.7, 129.0, 129.2, 129.3, 130.0, 130.2, 130.8,

131.6, 133.5, 138.3, 147.0, 147.1; HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₁₈NO⁺: 312.1388; found: 312.1397.

3.1.2. 1-(4-Fluorophenyl)-3-phenylisoquinoline 2-oxide **3b**. Yield: 45%; ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.29 (m, 2H), 7.42–7.51 (m, 5H), 7.54–7.60 (m, 3H), 7.80–7.85 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 114.7 (d, ²J_{C-F}=22 Hz), 123.2, 124.2, 125.9, 126.4, 127.0,

Scheme 1. Reaction of 2-(phenylethynyl)benzaldehyde oxime 1a with (E)-(2-bromovinyl)benzene.

127.2, 127.7, 127.9, 128.2, 129.0, 131.5 (d, ${}^{2}J_{C-F}=8$ Hz), 132.2, 144.6, 146.2, 162.0 (d, ${}^{1}J_{C-F}=248$ Hz); HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₁H₁₅FNO⁺: 316.1138; found: 316.1132.

3.1.3. 1-(3-Nitrophenyl)-3-phenylisoquinoline 2-oxide **3c**. Yield: 77%; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J*=8.4 Hz, 1H), 7.47–7.52 (m, 3H), 7.55 (t, *J*=7.6 Hz, 1H), 7.63 (t, *J*=7.6 Hz, 1H), 7.80 (t, *J*=8.0 Hz, 1H), 7.82–7.85 (m, 2H), 7.89 (d, *J*=8.0 Hz, 1H), 7.94 (s, 1H), 7.99 (d, *J*=7.6 Hz, 1H), 8.41 (d, *J*=8.0 Hz, 1H), 8.49 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 124.2, 124.5, 124.9, 125.9, 127.3, 128.1, 128.5, 128.8, 129.4, 129.5, 129.7, 130.0, 132.7, 133.1, 137.0, 143.9, 144.1, 147.2, 148.4; HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁H₁₅N₂O₃⁺: 343.1083; found: 343.1073.

3.1.4. 1-(3,5-Bis(trifluoromethyl)phenyl)-3-phenylisoquinoline 2-oxide**3d** $. Yield: 66%; ¹H NMR (400 MHz, DMSO-<math>d_6$) δ 7.24 (d, J=8.0 Hz, 1H), 7.47–7.53 (m, 3H), 7.58–7.69 (m, 2H), 7.79–7.86 (m, 2H), 8.07 (d, J=8.0 Hz, 1H), 8.29 (d, J=8.8 Hz, 2H), 8.36 (s, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 121.4, 121.8 (q, $^{1}J_{C-F}=273$ Hz), 122.4, 124.1, 126.2, 126.6, 127.4, 127.8, 128.0, 128.5, 129.9, 130.0, 130.3, 131.5, 132.7, 141.3, 145.2; HRMS (ESI): m/z [M+H]⁺ calcd for C₂₃H₁₄F₆NO⁺: 434.0980; found: 434.0982.

3.1.5. 1-(Phenanthren-9-yl)-3-phenylisoquinoline 2-oxide **3e**. Yield: 80%; ¹H NMR (400 MHz, DMSO- d_6) δ 7.31 (t, *J*=8.4 Hz, 2H), 7.40–7.49 (m, 5H), 7.57 (t, *J*=7.2 Hz, 1H), 7.64–7.70 (m, 2H), 7.76 (t, *J*=7.6 Hz, 1H), 7.84–7.89 (m, 3H), 7.94 (d, *J*=8.0 Hz, 1H), 7.97 (d, *J*=8.0 Hz, 1H), 8.09 (s, 1H), 8.81 (t, *J*=8.0 Hz, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 121.5, 121.9, 123.5, 123.6, 124.6, 125.7, 125.8, 125.9, 126.0, 126.5, 127.1, 127.6, 127.7, 127.8, 127.9, 128.2, 128.3, 128.5, 128.7, 129.2, 129.4, 129.9, 132.0, 144.1, 144.5; HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₉H₂₀NO⁺: 398.1545; found: 398.1539.

3.1.6. 3-Phenyl-1-p-tolylisoquinoline 2-oxide **3f**. Yield: 78%; ¹H NMR (400 MHz, CDCl₃) δ 2.46 (s, 3H), 7.37 (d, *J*=8.0 Hz, 2H), 7.43–7.49 (m, 6H), 7.50–7.57 (m, 3H), 7.80–7.87 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 123.9, 125.7, 125.9, 126.8, 127.9, 128.1, 128.4, 128.5, 129.1, 129.3, 129.5, 130.1, 130.2, 133.4, 139.1, 146.8, 147.2; HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₂H₁₈NO⁺: 312.1388; found: 312.1386.

3.1.7. 1,3-Diphenylisoquinoline 2-oxide **3g**. Yield: 36%; ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.49 (m, 6H), 7.50–7.60 (m, 5H), 7.81–7.87 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 124.1, 125.5, 126.9, 128.0, 128.2, 128.5, 128.6, 129.0, 129.1, 129.2, 130.1, 130.3, 131.6, 133.4, 146.6, 147.2; HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁H₁₆NO⁺: 298.1232; found: 298.1228.

3.1.8. 1-(4-Nitrophenyl)-3-phenylisoquinoline 2-oxide **3h**. Yield: 52%; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J*=8.8 Hz, 1H), 7.44–7.50 (m, 3H), 7.53 (t, *J*=7.2 Hz, 1H), 7.61 (t, *J*=8.0 Hz, 1H), 7.78–7.84 (m, 4H), 7.87 (d, *J*=8.0 Hz, 1H), 7.92 (s, 1H), 8.44 (d, *J*=8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 123.9, 124.4, 124.9, 127.3, 128.1, 128.4, 128.6, 129.2, 129.3, 129.5, 130.0, 131.9, 132.7, 138.3, 144.2, 147.3, 148.2; HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₁H₁₅N₂O₃⁺: 343.1083; found: 343.1077.

3.1.9. 1-*m*-Tolyl-3-*p*-tolylisoquinoline 2-oxide **3i**. Yield: 67%; ¹H NMR (400 MHz, CDCl₃) δ 2.40 (s, 3H), 2.43 (s, 3H), 7.25–7.29 (m, 3H), 7.29–7.36 (m, 2H), 7.38 (s, 1H), 7.42–7.48 (m, 3H), 7.50–7.55 (m, 1H), 7.75–7.82 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 21.5, 123.7, 125.6, 126.8, 127.3, 128.1, 128.4, 128.5, 128.6, 128.9, 129.2, 129.9, 130.0, 130.4, 130.7, 131.6, 138.3, 139.2, 146.8, 147.3; HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₃H₂₀NO⁺: 326.1545; found: 326.1551.

3.1.10. 3-(4-Methoxyphenyl)-1-m-tolylisoquinoline 2-oxide **3***j*. Yield: 71%; ¹H NMR (400 MHz, CDCl₃) δ 2.42 (s, 3H), 3.84

(s, 3H), 6.97 (d, *J*=7.6 Hz, 2H), 7.32 (d, *J*=6.8 Hz, 2H), 7.37 (s, 1H), 7.40–7.53 (m, 4H), 7.78 (d, *J*=8.4 Hz, 1H), 7.80 (s, 1H), 7.84 (d, *J*=8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 55.4, 113.3, 123.4, 125.6, 125.7, 126.7, 127.2, 128.1, 128.3, 128.6, 128.8, 129.2, 129.9, 130.7, 131.6, 138.3, 146.9, 160.3; HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₃H₂₀NO₂⁺: 342.1494; found: 342.1489.

3.1.11. 3-(4-*Methoxyphenyl*)-1-(3-*nitrophenyl*)*isoquinoline* 2-*oxide* **3***k*. Yield: 45%; ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 3H), 7.00 (d, *J*=8.0 Hz, 2H), 7.36 (d, *J*=8.4 Hz, 1H), 7.50 (t, *J*=8.0 Hz, 1H), 7.57–7.62 (m, 1H), 7.76 (t, *J*=7.6 Hz, 1H), 7.81 (d, *J*=8.0 Hz, 2H), 7.86 (d, *J*=8.0 Hz, 1H), 7.90 (s, 1H), 7.95 (d, *J*=7.6 Hz, 1H), 8.39 (d, *J*=8.0 Hz, 1H), 8.48 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.4, 122.1, 122.3, 124.1, 124.3, 124.4, 125.1, 125.9, 127.1, 128.3, 128.5, 129.1, 129.3, 129.7, 131.5, 133.3, 137.0, 147.0, 148.5, 160.6; HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₂H₁₇N₂O₄⁺: 373.1188; found: 373.1183.

3.1.12. 3-(4-*Methoxyphenyl*)-1-(*phenanthren*-9-*yl*)*isoquinoline* 2oxide **3I**. Yield: 75%; ¹H NMR (400 MHz, CDCl₃) δ 3.84 (s, 3H), 6.97 (d, *J*=8.8 Hz, 2H), 7.31–7.38 (m, 3H), 7.46 (t, *J*=7.6 Hz, 1H), 7.51–7.55 (m, 1H), 7.60–7.67 (m, 2H), 7.73 (t, *J*=7.6 Hz, 1H), 7.82–7.93 (m, 5H), 7.96 (s, 1H), 8.78 (t, *J*=8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.4, 113.4, 122.8, 123.2, 123.8, 125.4, 126.0, 126.7, 126.8, 127.0, 127.4, 127.6, 128.3, 128.6, 129.0, 129.2, 129.5, 129.6, 129.9, 130.7, 131.0, 131.4, 131.6, 146.0, 147.1, 160.4; HRMS (ESI): *m/z* [M+H]⁺ calcd for C₃₀H₂₂NO₂⁺: 428.1651; found: 428.1645.

3.1.13. 3-(4-Fluorophenyl)-1-*m*-tolylisoquinoline 2-oxide **3m**. Yield: 58%; ¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 3H), 7.05 (t, *J*=8.4 Hz, 2H), 7.24 (d, *J*=7.2 Hz, 2H), 7.28 (s, 1H), 7.36–7.40 (m, 3H), 7.43–7.49 (m, 1H), 7.72 (d, *J*=8.4 Hz, 1H), 7.73 (s, 1H), 7.77 (d, *J*=8.4 Hz, 1H), 7.78 (d, *J*=8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 114.9 (d, ²*J*_{C-F}=22 Hz), 123.8, 125.7, 126.8, 127.2, 128.3, 128.6, 128.7, 129.1 (d, ³*J*_{C-F}=8 Hz), 129.3, 130.0, 130.6, 131.4, 132.2 (d, ³*J*_{C-F}=9 Hz), 138.4, 146.1, 147.0, 163.2 (d, ¹*J*_{C-F}=248 Hz); HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₂H₁₇FNO⁺: 330.1294; found: 330.1299.

3.1.14. 3-(4-Fluorophenyl)-1-(3-nitrophenyl)isoquinoline 2-oxide **3n**. Yield: 66%; ¹H NMR (400 MHz, CDCl₃) δ 6.90–7.20 (m, 2H), 7.40 (s, 1H), 7.54–7.61 (m, 2H), 7.77–7.98 (m, 6H), 8.39 (d, *J*=6.0 Hz, 1H), 8.48 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 115.2 (d, ²*J*_{C-F}=22 Hz), 124.2, 124.5, 124.8, 125.9, 127.3, 128.5, 128.8, 129.2, 129.5, 129.8, 132.0, 132.1 (d, ³*J*_{C-F}=8 Hz), 133.2, 136.9, 143.9, 146.2, 148.5, 163.3 (d, ¹*J*_{C-F}=249 Hz); HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁H₁₄FN₂O₃⁺: 361.0988; found: 361.0989.

3.1.15. 3-(4-Fluorophenyl)-1-(phenanthren-9-yl)isoquinoline 2-oxide **30.** Yield: 38%; ¹H NMR (400 MHz, CDCl₃) δ 7.15 (t, *J*=8.8 Hz, 2H), 7.35–7.40 (m, 3H), 7.47 (t, *J*=7.6 Hz, 1H), 7.55–7.59 (m, 1H), 7.61–7.69 (m, 2H), 7.74 (t, *J*=7.2 Hz, 1H), 7.85 (s, 1H), 7.88–7.95 (m, 4H), 7.98 (s, 1H), 8.79 (t, *J*=8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 115.0 (d, ²*J*_{C-F}=21 Hz), 122.8, 123.3, 124.3, 125.5, 125.8, 126.8, 126.9, 127.1, 127.4, 127.6, 128.5, 128.7, 128.9, 129.0, 129.1, 129.2, 129.6, 129.8, 130.7, 131.1, 131.4, 132.2 (d, ³*J*_{C-F}=8 Hz), 146.2, 146.3, 163.4 (d, ¹*J*_{C-F}=247 Hz); HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₉H₁₉FNO⁺: 416.1451; found: 416.1456.

3.1.16. 3-(3-Fluorophenyl)-1-(phenanthren-9-yl)isoquinoline 2-oxide **3p**. Yield: 43%; ¹H NMR (400 MHz, CDCl₃) δ 7.13 (t, *J*=8.8 Hz, 1H), 7.32–7.50 (m, 5H), 7.53–7.70 (m, 4H), 7.72–7.76 (m, 2H), 7.85 (s, 1H), 7.89–7.92 (m, 2H), 8.01 (s, 1H), 8.79 (t, *J*=8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 116.3 (d, ²*J*_{C-F}=21 Hz), 117.3 (d, ²*J*_{C-F}=23 Hz), 122.8, 123.3, 124.7, 125.6, 125.8, 125.9, 126.9, 127.0, 127.1, 127.4, 127.7, 128.5, 128.6, 129.0, 129.2, 129.5, 129.6, 129.7, 129.8, 129.9, 130.7,

131.1, 131.3, 146.9, 146.0, 164.3(d, ${}^{1}J_{C-F}=243$ Hz); HRMS (ESI): m/z [M+H]⁺ calcd for C₂₉H₁₉FNO⁺: 416.1451; found: 416.1447.

3.1.17. 3-Cyclopropyl-1-(4-fluorophenyl)isoquinoline 2-oxide **3q**. Yield: 42%; ¹H NMR (400 MHz, CDCl₃) δ 0.80–0.96 (m, 2H), 1.15–1.27 (m, 2H), 2.77 (m, 1H), 7.25–7.29 (m, 2H), 7.30–7.45 (m, 3H), 7.48–7.53 (m, 3H), 7.72 (d, *J*=7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 8.03, 11.2, 115.8 (d, ²*J*_{C-F}=21 Hz), 118.3, 125.2, 126.3, 127.6, 127.8, 128.0, 128.2, 129.1, 132.3 (d, ³*J*_{C-F}=8 Hz), 145.4, 150.9, 163.0 (d, ¹*J*_{C-F}=248 Hz); HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₈H₁₅FNO⁺: 280.1138; found: 280.1143.

3.1.18. 3-Cyclopropyl-1-(3-nitrophenyl)isoquinoline 2-oxide **3r**. Yield: 64%; ¹H NMR (400 MHz, CDCl₃) δ 0.85–0.96 (m, 2H), 1.26–1.30 (m, 2H), 2.73–2.76 (m, 1H), 7.27–7.33 (m, 1H), 7.40–7.48 (m, 2H), 7.55 (s, 1H), 7.75–7.82 (m, 2H), 7.93 (s, 1H), 8.35–8.44 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 8.0, 11.1, 119.1, 124.1, 124.3, 125.8, 126.6, 127.3, 128.4, 128.5, 129.1, 129.8, 133.4, 136.9, 143.5, 148.5, 151.0; HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₈H₁₅N₂O₃⁺: 307.1083; found: 307.1084.

3.1.19. 6-Fluoro-3-phenyl-1-m-tolylisoquinoline 2-oxide **3s**. Yield: 67%; ¹H NMR (400 MHz, CDCl₃) δ 2.43 (s, 3H), 7.21–7.26 (m, 1H), 7.30–7.39 (m, 3H), 7.40–7.53 (m, 6H), 7.78 (s, 1H), 7.82–7.88 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 110.5 (d, ²*J*_{C-F}=21 Hz), 118.8 (d, ²*J*_{C-F}=25 Hz), 123.2, 126.2, 127.2, 128.0, 128.7, 129.4, 130.1, 130.2, 130.3, 130.7, 131.2, 133.0, 138.5, 147.0, 148.2, 161.9 (d, ¹*J*_{C-F}=250 Hz); HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₂H₁₇FNO⁺: 330.1294; found: 330.1289.

3.1.20. 6-*Fluoro-1-(4-fluorophenyl)-3-phenylisoquinoline 2-oxide* **3t**. Yield: 43%; ¹H NMR (400 MHz, CDCl₃) δ 7.26–7.46 (m, 7H), 7.55–7.60 (m, 2H), 7.78–7.82 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 110.7 (d, ²*J*_{C-F}=22 Hz), 115.9 (d, ²*J*_{C-F}=21 Hz), 119.1 (d, ²*J*_{C-F}=26 Hz), 123.4, 126.2, 127.2, 128.1, 128.3 (d, ³*J*_{C-F}=9 Hz), 129.5, 130.0, 130.2 (d, ³*J*_{C-F}=10 Hz), 132.5 (d, ³*J*_{C-F}=8 Hz), 132.9, 145.8, 148.2, 161.9 (d, ¹*J*_{C-F}=250 Hz), 163.2 (d, ¹*J*_{C-F}=247 Hz); HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₁H₁₄F₂NO⁺: 334.1043; found: 334.1048.

3.1.21. 6-Fluoro-1-(3-nitrophenyl)-3-phenylisoquinoline 2-oxide **3u**. Yield: 53%; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (dt, *J*=2.4, 8.8 Hz, 1H), 7.41 (dd, *J*=5.2, 9.2 Hz, 1H), 7.47–7.52 (m, 4H), 7.76 (d, *J*=8.0 Hz, 1H), 7.79–7.83 (m, 2H), 7.87 (s, 1H), 7.95 (d, *J*=7.6 Hz, 1H), 8.40 (d, *J*=8.0 Hz, 1H), 8.47 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 111.1 (d, ²*J*_{C-F}=21 Hz), 119.7 (d, ²*J*_{C-F}=25 Hz), 124.0, 124.3, 125.7, 125.9, 127.4 (d, ³*J*_{C-F}=9 Hz), 128.2, 129.7, 129.8, 129.9, 130.2, 130.3, 132.5, 133.0, 136.8, 144.0, 148.4 (d, ²*J*_{C-F}=23 Hz), 162.0 (d, ¹*J*_{C-F}=251 Hz); HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁H₁₄FN₂O₃⁺: 361.0988; found: 361.0983.

3.1.22. 7-Fluoro-3-phenyl-1-m-tolylisoquinoline 2-oxide **3v**. Yield: 81%; ¹H NMR (400 MHz, CDCl₃) δ 2.44 (s, 3H), 7.10 (dd, *J*=2.4, 10.0 Hz, 1H), 7.26–7.37 (m, 4H), 7.42–7.50 (m, 4H), 7.79–7.86 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 109.5 (d, ²*J*_{C-F}=24 Hz), 118.4 (d, ²*J*_{C-F}=24 Hz), 123.7, 126.1, 127.1, 128.0, 128.8, 129.3, 129.5 (d, ³*J*_{C-F}=9 Hz), 130.1, 130.2, 130.4, 130.5, 131.1, 133.1, 138.6, 146.4, 146.8, 162.0 (d, ¹*J*_{C-F}=251 Hz); HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₂H₁₇FNO⁺: 330.1294; found: 330.1299.

3.1.23. 7-Fluoro-3-phenyl-1-p-tolylisoquinoline 2-oxide **3w**. Yield: 92%; ¹H NMR (400 MHz, CDCl₃) δ 2.46 (s, 3H), 7.13 (dd, *J*=2.0, 10.0 Hz, 1H), 7.28 (dd, *J*=2.0, 8.8 Hz, 1H), 7.35–7.50 (m, 7H), 7.78–7.84 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 109.4 (d, ²*J*_{C-F}=23 Hz), 118.3 (d, ²*J*_{C-F}=25 Hz), 123.6, 126.1, 128.0, 128.1, 129.3, 129.5, 129.6, 130.1, 130.3, 130.4, 133.2, 139.4, 146.3, 146.7, 162.0

(d, ¹*J*_{C-F}=248 Hz); HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₂H₁₇FNO⁺: 330.1294; found: 330.1289.

Acknowledgements

Financial support from National Natural Science Foundation of China (21002042), Natural Science Foundation of Jiangxi Province of China (2009GQH0054), and Open Project Program of Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University (No. KLFS-KF-201217) is gratefully acknowledged.

Supplementary data

Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.tet.2012.08.039.

References and notes

- (a) Walsh, D. P.; Chang, Y.-T. Chem. Rev. 2006, 106, 2476; (b) Arya, P.; Chou, D. T. H.; Baek, M.-G. Angew. Chem., Int. Ed. 2001, 40, 339; (c) Schreiber, S. L. Science 2000, 287, 1964; (d) Spaller, M. R.; Burger, M. T.; Fardis, M.; Bartlett, P. A. Curr. Opin. Chem. Biol. 1997, 1, 47.
- For reviews, see: (a) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890; (b) Negishi, E.; Coprret, C.; Ma, S.; Liou, S. Y.; Liu, F. Chem. Rev. 1996, 96, 365; (c) Tietze, L. F. Chem. Rev. 1996, 96, 115; (d) Grigg, R.; Sridharan, V. J. Organomet. Chem. 1999, 576, 65; (e) Miura, T.; Murakami, M. Chem. Commun. 2007, 217; For recent examples, see: (f) Agapiou, K.; Cauble, D. F.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 4528; (g) Subburaj, K.; Montgomery, J. J. Am. Chem. Soc. 2003, 125, 11210; (h) Guo, H.-C.; Ma, J.-A. Angew. Chem., Int. Ed. 2006, 45, 354.
- For selected recent reviews on multicatalysis, see: (a) Ajamian, A.; Gleason, J. L. Angew. Chem., Int. Ed. 2004, 43, 3754; (b) Lee, J. M.; Na, Y.; Han, H.; Chang, S. Chem. Soc. Rev. 2004, 33, 302; (c) Wasilke, J. C.; Brey, O. S. J.; Baker, R. T.; Bazan, G. C. Chem. Rev. 2005, 105, 1001; (d) Enders, D.; Grondal, C.; Huttl, M. R. Angew. Chem., Int. Ed. 2007, 46, 1570; (e) Chapman, C. J.; Frost, C. G. Synthesis 2007, 1; (f) Walji, A. M.; MacMillan, D. W. C. Synlett 2007, 1477; (g) Wang, C.; Xi, Z. Chem. Soc. Rev. 2007, 36, 1395.
- For recent selected examples, see: (a) Cernak, T. A.; Lambert, T. H. J. Am. Chem. Soc. 2009, 131, 3124; (b) Kelly, B. D.; Allen, J. M.; Tundel, R. E.; Lambert, T. H. Org. Lett. 2009, 11, 1381; (c) Lu, L-Q.; Cao, Y.-J.; Liu, X.-P.; An, J.; Yao, C.-J.; Ming, Z.-H.; Xiao, W.-J. J. Am. Chem. Soc. 2008, 130, 6946; (d) Seigal, B. A.; Fajardo, C.; Snapper, M. L. J. Am. Chem. Soc. 2005, 127, 16329; (e) Lebel, H.; Paquet, V. J. Am. Chem. Soc. 2004, 126, 320; (f) Lebel, H.; Paquet, V. J. Am. Chem. Soc. 2004, 126, 11152; (g) Ding, Q.; Wang, Z.; Wu, J. Tetrahedron Lett. 2009, 50, 198; (h) Gao, K.; Wu, J. J. Org. Chem. 2007, 72, 8611.
- (a) Weber, L.; Almstetter, M. Synlett **1999**, 366; (b) Multicomponent Reactions; Zhu, J., Bienayme, H., Eds.; Wiley-VCH: Weinheim: Germany, 2005; (c) Doemling, A. Chem. Rev. **2006**, 106, 17; (d) Ding, Q.; Wu, J. Org. Lett. **2007**, *9*, 4959.
- For recent selected examples, see: (a) Ding, Q; Wang, Jog. Lett. 2009, 7, 4539.
 For recent selected examples, see: (a) Ding, Q; Wang, Z; Wu, J. J. Org. Chem. 2009, 74, 921; (b) Ding, Q; Wu, J. Adv. Synth. Catal. 2008, 350, 1850; (c) Ye, S.; Wang, H.; Wu, J. Eur. J. Org. Chem. 2010, 6436; (d) Ye, S.; Wang, H.; Wu, J. ACS Comb. Sci. 2011, 13, 120; (e) Chen, Z.; Yu, X.; Su, M.; Yang, X.; Wu, J. Adv. Synth. Catal. 2009, 351, 2702; (f) Ye, S.; Gao, K.; Wu, J. Adv. Synth. Catal. 2010, 352, 1746.
- (a) Yeom, H.-S.; Lee, J.-E.; Shin, S. Angew. Chem., Int. Ed. 2008, 47, 7040; (b) Yeom, H.-S.; Kim, S.; Shin, S. Synlett 2008, 924.
- 8. (a) Bentley, K. W. The Isoquinoline Alkaloids; Harwood Academic: Australia, 1998; Vol. 1; (b) Phillipson, J. D.; Roberts, M. F.; Zenk, M. H. The Chemistry and Biology of Isoquinoline Alkaloids; Springer: New York, NY, 1985; (c) Ramesh, P.; Reddy, N. S.; Venkateswarlu, Y. J. Nat. Prod. 1999, 62, 780; (d) Kaneda, T.; Takeuchi, Y.; Matsui, H.; Shimizu, K.; Urakawa, N.; Nakajyo, S. J. Pharmacol. Sci. 2005, 98, 275.
- (a) Nakajima, M.; Saito, M.; Shiro, M.; Hashimoto, S.-I. J. Am. Chem. Soc. 1998, 120, 6419; (b) Shimada, T.; Kina, A.; Ikeda, S.; Hayashi, T. Org. Lett. 2002, 4, 2799; (c) Malkov, A. V.; Orsini, M.; Pernazza, D.; Muir, K. W.; Langer, V.; Meghani, P.; Kočovský, P. Org. Lett. 2002, 4, 1047; (d) Malkov, A. V.; Dufková, L.; Farrugia, L.; Kočovský, P. Angew. Chem., Int. Ed. 2003, 42, 3674; (e) Hrdina, R.; Valterová, I.; Hodačová, J.; Císařová, I.; Kotora, M. Adv. Synth. Catal. 2007, 349, 822.
- (a) Collado, D.; Perez-Inestrosa, E.; Suau, R. J. Org. Chem. 2003, 68, 3574; (b) Collado, D.; Perez-Inestrosa, E.; Suau, R.; Desvergne, J.-P.; Bouas-Laurent, H. Org. Lett. 2002, 4, 855; (c) Collado, D.; Perez-Inestrosa, E.; Suau, R.; Navarrete, J. T. L. Tetrahedron 2006, 62, 2927; (d) Durmaz, Y. Y.; Yilmaz, G.; Yagci, Y. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 423.
- (a) Cho, S.; Hwang, S.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254; (b) Campeau, L.-C.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005, 127, 18020; (c) Campeau, L.-C.; Schipper, D. J.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 3266; (d) Campeau, L.-C.; Stuart, D. R.; Leclerc, J.-P.; Bertrand-Laperle, M.; Villemure, E.; Sun, H.-Y.; Lasserre, S.; Guimond, N.; Lecavallier, M.; Fagnou, K. J. Am. Chem. Soc. 2009, 131, 3291.