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Abstract—Preparation of N-cinnamoyl- and N-crotonyl-oxazolidin-2-ones 2 and 3 or ent-2 and ent-3 from (4S,5S)- and (4R,5R)-
trans-hexahydrobenzoxazolidin-2-ones 1 or ent-1 are reported. Stereoselective copper promoted conjugated additions of Grignard
reagents to chiral N-enoyl amides 2 and 3 or ent-2 and ent-3 in the presence of Zn(II) salts afforded the 1,4-addition products 4–11
and the corresponding enantiomers.
� 2005 Elsevier Ltd. All rights reserved.
Table 1. N-Acylation of trans-oxazolidin-2-ones 1 and ent-1

N

O

O1. NaH (2.5 equiv)
THF, 25 oC, 1 h 
2. RCH=CHCOCl 
(1.5 equiv), THF
25 oC, 2 h

1 or ent-1

O

R

N
H

O

O

2 or ent-2 
3 or ent-3

Entry Oxazolidinone R Product Yield (%)a [a]D
b

1 1 Ph 2 81 +11.0
2 1 CH3 3 81 +7.4
1. Introduction

Michael addition reactions represent one of the most
important carbon–carbon bond forming reactions in
modern synthetic organic chemistry.1 The asymmetric
1,4-addition reactions of organometallics into a,b-unsatu-
rated esters and amides have been demonstrated to
provide products in high chemical and stereochemical
purity, and represent a valuable transformation to
achieve chiral b-substituted carboxylic acids.2

Organocopper reagents are among the most versatile
reagents available for conjugate addition reactions.3

Chiral catalysts4 and chiral auxiliaries5 have been used
efficiently for copper promoted asymmetric conjugated
additions of Grignard reagents.

Recently, we reported a convenient procedure for the
preparation of (4S,5S)- and (4R,5R)-trans-hexahydro-
benzoxazolidin-2-ones 1 and ent-1 from inexpensive
cyclohexene oxide and (S)-a-phenylethylamine.6,7

We now report the preparation of N-cinnamoyl- and N-
crotonyl-amides 2 and 3 or ent-2 and ent-3,8 and the
asymmetric Michael addition reactions in the presence
of Grignard reagents, CuBr–DMS (dimethyl sulfide),
DMS, and Zn(II) salts.
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2. Results and discussion

The preparation of N-enoyl-oxazolidinones 2 and 3 or
ent-2 and ent-3 (Table 1) was performed by deprotona-
tion of the chiral auxiliaries 1 and ent-1 with NaH
(2.5 equiv) in THF at 25 �C for 1 h.8 The acylating
agents (1.5 equiv, cinnamoyl- and crotonyl chloride)
were slowly added at 25 �C and the reaction mixture
was stirred for 2 h. The crude products were purified
by column chromatography on silica gel affording the
N-enoyl-amides 2 and 3 or ent-2 and ent-3 in 80–81%
yield (Table 1).
3 ent-1 Ph ent-2 80 �10.9
4 ent-1 CH3 ent-3 80 �7.0

a Yields were measured after purification by column chromatography
on silica gel [hexanes–EtOAc (6:1)].

b Optical rotations were measured in c 1.0, CHCl3.
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Table 2. 1,4-Addition to (4S,5S,2 0E)-N-(cinnamoyl)- and N-(crotonyl)-oxazolidin-2-ones 2 and 3

N

O

O

R = Ph; 2 
R = Me; 3

O

R

N

O

O

O

R

R'

1. CuBrS(CH3)2 (1.5 equiv), THF, –40 oC, 2 h
2. ZnX2 (0.3 equiv),  R'MgBr (3 equiv), THF
–40 oC to 25 oC, 20 min

R = Ph; 4 - 7
R = Me; 8 - 11

Entry Substrate R0 ZnX2 Major producta Yield (%)b dr (R:S)c

1 2 Me d (4S,5S,3 0R)-4 40 78:22
2 2 Me ZnI2 (4S,5S,3 0R)-4e 75 91:9
3 2 Me ZnBr2 (4S,5S,3 0R)-4 72 87:13
4 2 Me ZnCl2 (4S,5S,3 0R)-4 72 79:19
5 2 Me Zn(CF3SO3)2 (4S,5S,3 0R)-4 70 85:14
6 2 Et ZnI2 (4S,5S,3 0R)-5 81 90:10
7 2 n-Pr ZnI2 (4S,5S,3 0R)-6 80 86:14
8 2 n-Bu ZnI2 (4S,5S,3 0R)-7 76 84:16
9 3 Ph d (4S,5S,3 0S)-8 44 41:59
10 3 Ph ZnI2 (4S,5S,3 0S)-8e 75 25:75
11 3 Et ZnI2 (4S,5S,3 0S)-9 79 12:88
12 3 n-Pr ZnI2 (4S,5S,3 0S)-10 76 16:84
13 3 n-Bu ZnI2 (4S,5S,3 0S)-11 78 19:81

a Configuration of major products were assigned by chemical correlation with the corresponding carboxylic acids, by optical rotation and HPLC
analysis with a Chiralcel OD column, see Ref. 9.

b Yields were measured after purification by column chromatography on silica gel [hexanes–EtOAc (5:1)].
c Diastereoisomeric ratios were measured from 1H NMR spectra of crude products.
d Conjugated additions were performed in the absence of zinc salt.
e Assignments of absolute configuration were obtained by X-ray diffraction crystallography from suitable single crystals.
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First, N-cinnamoyl-amide 2 (1 equiv) was added to
CuBr–DMS complex (1.5 equiv), followed by the addi-
tion of MeMgBr (3 equiv) in THF at �40 �C, affording
(4S,5S,3 0R)-4 as the major diastereoisomer (Table 2,
entry 1). The 1,4-addition reaction gave low yield
(40%) and moderate diastereoisomeric ratio (78:22).
Then, improved yields (up to 75%) and diastereoiso-
meric ratios (up to 91:9) were obtained in the presence
of zinc salts (0.3 equiv): -chloride, -bromide, -iodide,
and -triflate (Table 2, entries 2–5). The best diastereoiso-
meric ratio was observed by adding ZnI2 (Table 2, entry
2). So, we proceeded to perform the conjugated addition
of other copper-promoted Grignard reagents to N-cin-
namoyl-oxazolidinone 2 employing Et-, n-Pr-, and n-Bu-
MgBr in the presence of ZnI2. The diastereoisomeric
ratios were measured on clearly resolved 1H NMR
signals of the crude reactions (Table 2, entries 7–9).
The crude products were purified by column chromato-
graphy on silica gel affording the conjugated addition
compounds 5–7 in good yields after column chromato-
graphy (76–81%).

The same methodology for the conjugated addition of
copper-promoted Grignard reagent was performed with
N-crotonyl amide 3 in the presence of PhMgBr. By the
same token, without ZnI2 afforded (4S,5S,3 0S)-8 as the
major diastereoisomer in low yield and poor diastereo-
isomeric ratio (Table 2, entry 9, 44% yield, dr 41:59).
Addition of ZnI2 to the reaction mixture increased both
yield and diastereoisomeric ratio (Table 2, entry 10, 75%
yield, 25:75). So, we proceeded to perform the conju-
gated addition to N-crotonyl-hexahydrobenzoxazol-
idin-2-one 3 of organocopper reagents formed with
Et-, n-Pr-, and n-BuMgBr in the presence of ZnI2. The
1,4-addition reactions afforded 9–11 in good yields after
column chromatography purification (Table 2, entries
11–13, 76–79% yield, and up to 12:88 dr).

Finally, we performed the conjugated addition reactions
to the enantiomers (4R,5R,2 0E)-N-cinnamoyl- and N-
crotonyl-oxazolidin-2-ones ent-2 and ent-3 using the
protocol already described. The Michael reactions affor-
ded ent-4–ent-11 (Table 3, entries 1–8, 74–81% yield, and
up to 10:90 dr).

Chemical correlation by basic hydrolysis of N-cinna-
moyl- and N-crotonyl-1,4-addition products 4–11 and
ent-4–ent-11 afforded the corresponding 3-phenyl- and
3-methyl-carboxylic acids, which were previously
reported in the literature, and the oxazolidinones 1
and ent-1 were recovered (81–90% yield).9

The products 4 and 8 (Table 2, entries 2 and 10) were
recrystallized from hexanes–isopropanol (10:1). The
absolute configuration at the new stereogenic center in
both compounds were assigned by X-ray diffraction
analysis from suitable single crystals.10,11

As is well known, bulkier groups at position 4 of oxa-
zolidin-2-ones induced higher stereoselectivities on the
b-position of the double bond, that is: phenyl > tert-
butyl > isopropyl� benzyl.3 We compared the diastereo-
selectivities obtained with our oxazolidinones 2 and 3
in the absence of ZnI2 with other chiral auxiliaries,
and we observed that the results were only slightly better
than those reported with N-enoyl-4-benzyl-2-oxazolidi-



Table 3. 1,4-Addition to (4R,5R,2 0E)-N-(cinnamoyl)- and N-(crotonyl)-oxazolidin-2-ones ent-2 and ent-3

N

O

O

R = Ph; ent-2 
R = Me; ent-3

O

R

N

O

O

O

R

R'

1. CuBrS(CH 3) 2 (1.5 equiv), THF, – 40 oC, 2 h

2. ZnI2 (0.3 equiv),  R'MgBr (3 equiv), THF
– 40 oC to 25 oC, 20 min

R = Ph; ent-4 - ent-7 
R = Me; ent-8 - ent-11

Entry Substrate R0 Major producta Yield (%)b dr (R:S)c

1 ent-2 Me (4R,5R,3 0S)-ent-4 75 10:90
2 ent-2 Et (4R,5R,3 0S)-ent-5 81 12:88
3 ent-2 n-Pr (4R,5R,3 0S)-ent-6 79 15:85
4 ent-2 n-Bu (4R,5R,3 0S)-ent-7 77 18:82
5 ent-3 Ph (4R,5R,3 0R)-ent-8 74 74:26
6 ent-3 Et (4R,5R,3 0R)-ent-9 78 85:15
7 ent-3 n-Pr (4R,5R,3 0R)-ent-10 78 80:20
8 ent-3 n-Bu (4R,5R,3 0R)-ent-11 75 77:23

a Configuration of major products were assigned by chemical correlation with the corresponding carboxylic acids, by optical rotation and HPLC
analysis with a Chiralcel OD column, see Ref. 9.

b Yields were measured after purification by column chromatography on silica gel [hexanes–EtOAc (5:1)].
c Diastereoisomeric ratios were measured from 1H NMR spectra of crude products.
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nones.3b,f However, in the presence of ZnI2, we observed
a substantial improvement on diastereoselectivities,
which were similar to those reported with N-enoyl-4-iso-
propyl-2-oxazolidinones.3e We surmise that it is due to
the chelation of Zn(II) with the carbonyl groups, so
the precomplexed Zn(II)/oxazolidinones seemed to react
in a syn-s-cis conformation.

The study of stereoselective conjugated addition reac-
tions is an ongoing project in our laboratory. Prelimi-
nary results showed that Michael addition reactions to
trans-N-cinnamoyl- and N-crotonyloxazolidin-2-ones 2
and 3 or ent-2 and ent-3 in the presence of ZnI2
(0.3 equiv) proceed with good yields (75–81%) and good
diastereoisomeric ratios (up to 91:9). The configuration
of the new stereogenic center is based on the chiral auxi-
liaries 1 or ent-1 employed.
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