

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 8649-8652

Tetrahedron Letters

Asymmetric Michael addition using N-cinnamoyl- and N-crotonyl-*trans*-hexahydrobenzoxazolidin-2-ones

Lydia Pérez,^a Sylvain Bernès,^a Leticia Quintero^{a,*} and Cecilia Anaya de Parrodi^{b,*}

^aCentro de Investigación de la Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, 72570 Puebla, Mexico ^bDepto. de Química y Biología, Universidad de las Américas-Puebla, Santa Catarina Mártir, 72820 Cholula, Mexico

Received 8 September 2005; revised 9 October 2005; accepted 17 October 2005

Abstract—Preparation of *N*-cinnamoyl- and *N*-crotonyl-oxazolidin-2-ones 2 and 3 or *ent*-2 and *ent*-3 from (4S,5S)- and (4R,5R)*trans*-hexahydrobenzoxazolidin-2-ones 1 or *ent*-1 are reported. Stereoselective copper promoted conjugated additions of Grignard reagents to chiral *N*-enoyl amides 2 and 3 or *ent*-2 and *ent*-3 in the presence of Zn(II) salts afforded the 1,4-addition products 4–11 and the corresponding enantiomers.

© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Michael addition reactions represent one of the most important carbon–carbon bond forming reactions in modern synthetic organic chemistry.¹ The asymmetric 1,4-addition reactions of organometallics into α , β -unsaturated esters and amides have been demonstrated to provide products in high chemical and stereochemical purity, and represent a valuable transformation to achieve chiral β -substituted carboxylic acids.²

Organocopper reagents are among the most versatile reagents available for conjugate addition reactions.³ Chiral catalysts⁴ and chiral auxiliaries⁵ have been used efficiently for copper promoted asymmetric conjugated additions of Grignard reagents.

Recently, we reported a convenient procedure for the preparation of (4S,5S)- and (4R,5R)-*trans*-hexahydrobenzoxazolidin-2-ones 1 and *ent*-1 from inexpensive cyclohexene oxide and (S)- α -phenylethylamine.^{6,7}

We now report the preparation of *N*-cinnamoyl- and *N*-crotonyl-amides **2** and **3** or *ent*-**2** and *ent*-**3**,⁸ and the asymmetric Michael addition reactions in the presence of Grignard reagents, CuBr–DMS (dimethyl sulfide), DMS, and Zn(II) salts.

2. Results and discussion

The preparation of *N*-enoyl-oxazolidinones 2 and 3 or *ent-2* and *ent-3* (Table 1) was performed by deprotonation of the chiral auxiliaries 1 and *ent-1* with NaH (2.5 equiv) in THF at 25 °C for 1 h.⁸ The acylating agents (1.5 equiv, cinnamoyl- and crotonyl chloride) were slowly added at 25 °C and the reaction mixture was stirred for 2 h. The crude products were purified by column chromatography on silica gel affording the *N*-enoyl-amides 2 and 3 or *ent-2* and *ent-3* in 80–81% yield (Table 1).

Table 1	1.	N-Acylation	ı of	trans-oxazo	lidin-2	l-ones 1	and	ent-1
---------	----	-------------	------	-------------	---------	----------	-----	-------

^a Yields were measured after purification by column chromatography on silica gel [hexanes-EtOAc (6:1)].

^b Optical rotations were measured in c 1.0, CHCl₃.

^{*} Corresponding authors. Tel.: +52 222 229 2670; fax: +52 222 229 2419; e-mail: cecilia.anaya@udlap.mx

^{0040-4039/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.10.065

Entry	Substrate	R ′	ZnX_2	Major product ^a	Yield (%) ^b	dr $(R:S)^{c}$
1	2	Me	d	(4S, 5S, 3'R)-4	40	78:22
2	2	Me	ZnI_2	$(4S,5S,3'R)-4^{e}$	75	91:9
3	2	Me	$ZnBr_2$	(4S,5S,3'R)-4	72	87:13
4	2	Me	$ZnCl_2$	(4S,5S,3'R)-4	72	79:19
5	2	Me	$Zn(CF_3SO_3)_2$	(4S, 5S, 3'R)-4	70	85:14
6	2	Et	ZnI_2	(4S,5S,3'R)-5	81	90:10
7	2	<i>n</i> -Pr	ZnI_2	(4 <i>S</i> ,5 <i>S</i> ,3' <i>R</i>)-6	80	86:14
8	2	<i>n</i> -Bu	ZnI_2	(4S, 5S, 3'R)-7	76	84:16
9	3	Ph	d	(4 <i>S</i> ,5 <i>S</i> ,3' <i>S</i>)- 8	44	41:59
10	3	Ph	ZnI_2	(4S, 5S, 3'S)-8 ^e	75	25:75
11	3	Et	ZnI_2	(4 <i>S</i> ,5 <i>S</i> ,3' <i>S</i>)-9	79	12:88
12	3	<i>n</i> -Pr	ZnI_2	(4 <i>S</i> ,5 <i>S</i> ,3' <i>S</i>)-10	76	16:84
13	3	<i>n</i> -Bu	ZnI_2	(4 <i>S</i> ,5 <i>S</i> ,3' <i>S</i>)-11	78	19:81

^a Configuration of major products were assigned by chemical correlation with the corresponding carboxylic acids, by optical rotation and HPLC analysis with a Chiralcel OD column, see Ref. 9.

^b Yields were measured after purification by column chromatography on silica gel [hexanes-EtOAc (5:1)].

^c Diastereoisomeric ratios were measured from ¹H NMR spectra of crude products.

^d Conjugated additions were performed in the absence of zinc salt.

^e Assignments of absolute configuration were obtained by X-ray diffraction crystallography from suitable single crystals.

First, N-cinnamoyl-amide 2 (1 equiv) was added to CuBr–DMS complex (1.5 equiv), followed by the addition of MeMgBr (3 equiv) in THF at -40 °C, affording (4S,5S,3'R)-4 as the major diastereoisomer (Table 2, entry 1). The 1,4-addition reaction gave low yield (40%) and moderate diastereoisomeric ratio (78:22). Then, improved yields (up to 75%) and diastereoisomeric ratios (up to 91:9) were obtained in the presence of zinc salts (0.3 equiv): -chloride, -bromide, -iodide, and -triflate (Table 2, entries 2-5). The best diastereoisomeric ratio was observed by adding ZnI₂ (Table 2, entry 2). So, we proceeded to perform the conjugated addition of other copper-promoted Grignard reagents to N-cinnamoyl-oxazolidinone 2 employing Et-, n-Pr-, and n-Bu-MgBr in the presence of ZnI_2 . The diastereoisomeric ratios were measured on clearly resolved ¹H NMR signals of the crude reactions (Table 2, entries 7–9). The crude products were purified by column chromatography on silica gel affording the conjugated addition compounds 5-7 in good yields after column chromatography (76-81%).

The same methodology for the conjugated addition of copper-promoted Grignard reagent was performed with N-crotonyl amide **3** in the presence of PhMgBr. By the same token, without ZnI₂ afforded (4S,5S,3'S)-**8** as the major diastereoisomer in low yield and poor diastereoisomeric ratio (Table 2, entry 9, 44% yield, dr 41:59). Addition of ZnI₂ to the reaction mixture increased both yield and diastereoisomeric ratio (Table 2, entry 10, 75% yield, 25:75). So, we proceeded to perform the conjugated addition to N-crotonyl-hexahydrobenzoxazolidin-2-one **3** of organocopper reagents formed with

Et-, *n*-Pr-, and *n*-BuMgBr in the presence of ZnI_2 . The 1,4-addition reactions afforded **9–11** in good yields after column chromatography purification (Table 2, entries 11–13, 76–79% yield, and up to 12:88 dr).

Finally, we performed the conjugated addition reactions to the enantiomers (4R,5R,2'E)-N-cinnamoyl- and N-crotonyl-oxazolidin-2-ones *ent*-2 and *ent*-3 using the protocol already described. The Michael reactions afforded *ent*-4–*ent*-11 (Table 3, entries 1–8, 74–81% yield, and up to 10:90 dr).

Chemical correlation by basic hydrolysis of *N*-cinnamoyl- and *N*-crotonyl-1,4-addition products **4–11** and *ent-4–ent-11* afforded the corresponding 3-phenyl- and 3-methyl-carboxylic acids, which were previously reported in the literature, and the oxazolidinones **1** and *ent-1* were recovered (81–90% yield).⁹

The products 4 and 8 (Table 2, entries 2 and 10) were recrystallized from hexanes–isopropanol (10:1). The absolute configuration at the new stereogenic center in both compounds were assigned by X-ray diffraction analysis from suitable single crystals.^{10,11}

As is well known, bulkier groups at position 4 of oxazolidin-2-ones induced higher stereoselectivities on the β -position of the double bond, that is: phenyl > *tert*butyl > isopropyl \gg benzyl.³ We compared the diastereoselectivities obtained with our oxazolidinones 2 and 3 in the absence of ZnI₂ with other chiral auxiliaries, and we observed that the results were only slightly better than those reported with *N*-enoyl-4-benzyl-2-oxazolidi-

^a Configuration of major products were assigned by chemical correlation with the corresponding carboxylic acids, by optical rotation and HPLC analysis with a Chiralcel OD column, see Ref. 9.

^b Yields were measured after purification by column chromatography on silica gel [hexanes-EtOAc (5:1)].

^c Diastereoisomeric ratios were measured from ¹H NMR spectra of crude products.

nones.^{3b,f} However, in the presence of ZnI_2 , we observed a substantial improvement on diastereoselectivities, which were similar to those reported with *N*-enoyl-4-isopropyl-2-oxazolidinones.^{3e} We surmise that it is due to the chelation of Zn(II) with the carbonyl groups, so the precomplexed Zn(II)/oxazolidinones seemed to react in a *syn-s-cis* conformation.

The study of stereoselective conjugated addition reactions is an ongoing project in our laboratory. Preliminary results showed that Michael addition reactions to *trans-N*-cinnamoyl- and *N*-crotonyloxazolidin-2-ones **2** and **3** or *ent*-**2** and *ent*-**3** in the presence of ZnI_2 (0.3 equiv) proceed with good yields (75–81%) and good diastereoisomeric ratios (up to 91:9). The configuration of the new stereogenic center is based on the chiral auxiliaries **1** or *ent*-**1** employed.

Acknowledgments

This work was supported by CONACYT, Consejo Nacional de Ciencia y Tecnología (Project No. V39500-Q and Student Grant No. 134558).

References and notes

- (a) Oare, D. A.; Heathcock, C. H. Top. Stereochem. 1991, 20, 87–170; (b) Trost, B. M.; Fleming, I.. In Comprehensive Organic Synthesis; Pergamon Press: Oxford, UK, 1991; Vol. 4, pp 1–236; (c) Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Pergamon Press: Oxford, UK, 1992; (d) Perlmutter, P. In Advances in Asymmetric Synthesis; Stephenson, G. R., Ed.; Chapman & Hall: London, UK, 1996; pp 222–230; (e) Krause, N.; Hoffmann-Roeder, A. Synthesis 2001, 171–196.
- (a) Rossiter, B. E.; Swingle, N. M. Chem. Rev. 1992, 92, 771–806; (b) Sibi, M. P.; Manyem, S. Tetrahedron 2000,

56, 8033–8061; (c) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346–353; (d) Ramon, D.; Yus, M. Angew. Chem., Int. Ed. 2005, 44, 1602–1634.

- (a) Taylor, R. J. K.; Casy, G. In Organocopper Reagents-A Practical Approach; Taylor, T. J. K., Ed.; Oxford University Press: Oxford, 1994; (b) Nicolás, E.; Russel, K. C.; Hruby, V. J. J. Org. Chem. 1993, 58, 766–770; (c) Bergdahl, M.; Iliefski, T.; Nilsson, M.; Olsson, T. Tetrahedron Lett. 1995, 36, 3227–3230; (d) Nakamura, E.; Mori, S. Angew. Chem., Int. Ed. 2000, 39, 3750–3771; (e) Pollock, P.; Dambacher, J.; Annes, R.; Bergdahl, M. Tetrahedron Lett. 2002, 43, 3693–3697; (f) Dambacher, J.; Anness, R.; Pollock, P.; Bergdahl, M. Tetrahedron 2004, 60, 2097– 2110; (g) Maezaki, N.; Sawamoto, H.; Suzuki, T.; Yoshigami, R.; Tanaka, T. J. Org. Chem. 2004, 69, 8387–8398.
- (a) Des Mazery, R.; Pullez, M.; López, F.; Harutyunyan, S. R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2005, 127, 9966–9967; (b) Arink, A. M.; Braam, T. W.; Keeris, R.; Jastrzebski, J. T. B. H.; Benhaim, C.; Rosset, S.; Alexakis, A.; van Knoten, G. Org. Lett. 2004, 6, 1959– 1962.
- (a) Qian, X.; Russel, K. C.; Boteju, L. W.; Hruby, V. J. Tetrahedron 1995, 51, 1033–1054; (b) Wipf, P.; Takahashi, H. Chem. Commun. 1996, 2675–2676; (c) Andersson, P. G.; Schink, H. E.; Osterlund, K. J. Org. Chem. 1998, 63, 8067–8070; (d) Williams, D. R.; Kissel, W. S.; Li, J. J. Tetrahedron Lett. 1998, 39, 8593–8596; (e) Schneider, C.; Reese, O. Synthesis 2000, 1689–1694; (f) Dambacher, J.; Bergdahl, M. Org. Lett. 2003, 5, 3539–3541.
- (a) Anaya de Parrodi, C.; Juaristi, E.; Quintero, L.; Clara-Sosa, A. *Tetrahedron: Asymmetry* 1997, 8, 1075–1082; (b) Anaya de Parrodi, C.; Clara-Sosa, A.; Pérez, L.; Quintero, L.; Marañón, V.; Toscano, R. A.; Aviña, J. A.; Rojas-Lima, S.; Juaristi, E. *Tetrahedron: Asymmetry* 2001, 12, 69–79.
- For recent reviews on the use of (*R*)- and (*S*)-α-phenylethylamine in the preparation of enantiopure compounds, see: (a) Juaristi, E.; Escalante, J.; León-Romo, J. L.; Reyes, A. *Tetrahedron: Asymmetry* **1998**, *9*, 715–740; (b) Juaristi, E.; León-Romo, J. L.; Reyes, A.; Escalante, J. *Tetrahedron: Asymmetry* **1999**, *10*, 2441–2495.
- (a) Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J. Am. Chem. Soc. 1981, 103, 3099–3111; (b) Gage, J. R.;

Evans, D. A. Org. Synth. 1990, 68, 83; (c) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835–876.

- (a) Meyers, A. I.; Smith, R. K.; Whitten, C. E. J. Org. Chem. 1979, 44, 2250–2256; (b) Overberger, C. G.; Cho, I. J. Org. Chem. 1968, 33, 3321–3322; (c) Tomioka, K.; Suenaga, T.; Koga, K. Tetrahedron Lett. 1986, 27, 369– 372; (d) Meyers, A.; Kamata, K. J. Org. Chem. 1974, 39, 1603–1604.
- 10. (4S, 5S, 3'R)-3-(3'-Phenylbutanoyl)-hexahydrobenzoxazolidin-2-one 4: The product was recrystallized from hexane: isopropanol (10:1) affording the major diastereoisomer as colorless crystals; mp 72–74 °C, $[\alpha]_D$ +13.2 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃/TMS) δ: 7.0-7.28 (m, 5H); 3.61 (td, 1H, J = 11, J = 4), 3.44 (td, 1H, J = 11, J = 4), 3.37 (dd, 1H, J = 16, J = 6), 3.34 (m, 1H), 3.00 (dd, 1H, J = 16, J = 6), 2.70 (m, 1H), 2.65 (m, 1H),1.81 (m, 2H), 1.57 (qd, 1H, J = 12, J = 4), 1.34 (d, 3H, J = 8), 1.28 (m, 1H), 1.11 (qd, 2H, J = 12, J = 4); ¹³C NMR (100 MHz, CDCl₃/TMS) δ: 172.4, 155.2, 144.8, 128.4, 128.3, 127.2, 81.34, 63.0, 44.4, 36.9, 28.5, 28.4, 23.6, 23.5, 22.0; IR (cm⁻¹): 2866, 2360, 1782, 1689, 1311, 1033, 759. MS (*m*/*z*): 287 (M⁺), 272, 183, 142, 118, 105; HRMS-FAB+ m/z found 288.1604 $[(M+H)^+$ calcd 288.1600 for C₁₇H₂₁NO₃]. X-ray structure: Colorless plate, $0.60 \times 0.24 \times 0.16 \text{ mm}^3$, $C_{17}H_{21}NO_3$. Monoclinic, $P2_1, a = 10.5810(15), b = 5.4279(14), c = 13.743(2) \text{ Å}, \beta = 95.936(11)^\circ, Z = 2, \rho_{\text{calc}} = 1.216 \text{ g cm}^{-3}$. A set of 3749 reflections was collected using Mo-K_{α} radiation ($\lambda = 0.71073$ Å), corresponding to $2\theta_{max} = 52.6^{\circ}$, and 1997 independent reflections ($R_{int} = 0.050$) were used for the refinement of 191 parameters, without neither restraints nor constraints (SHELXTL 5.10 package). H atoms were placed in idealized positions and refined using a riding model. Final R indices: $R_1 = 0.052$ for 1442 reflections with $I > 2\sigma(I)$ and $wR_2 = 0.151$ for all data. The absolute configuration for the chiral centers was

assigned assuming that the configuration of the chiral starting material was unchanged during the synthesis. CCDC deposition number: 278745. Structure factors and raw files are available on request to authors.

11. (4S,5S,3'S)-3-(3'-Phenylbutanoyl)-hexahydrobenzoxazolidin-2-one 8: The product was recrystallized from hexane: isopropanol (10:1) affording the major diastereoisomer as colorless crystals; mp 74–78 °C, $[\alpha]_D$ –12.3 (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃/TMS) δ : 7.17–7.24 (m, 5H), 3.78 (td, 1H, J = 11, J = 4), 3.60 (td, 1H, J = 11, J = 4), 3.36 (dd, 1H, J = 16, J = 6), 3.34 (m, 1H), 3.00 (dd, 1H, J = 16, J = 6), 2.67 (m, 1H), 2.16 (m, 1H), 1.78 (m, 1H), 1.57 (qd, 2H, J = 12, J = 4), 1.30 (d, 3H, J = 8), 1.28 (m, 2H), 0.89 (qd, 1H, J = 12, J = 4), ¹³C NMR (100 MHz, CDCl₃/TMS) *δ*: 174.2, 154.7, 145.7, 128.4, 127.1, 126.4, 81.3, 63.0, 44.4, 36.8, 28.5, 28.4, 23.7, 23.5, 22.4; IR (cm^{-1}) : 2866, 2360, 1782, 1689, 1311, 1033, 759; MS (m/z): 287 (M⁺), 272, 183, 142, 118, 105; HRMS-FAB+ m/z found 288.1600 [(M+H)⁺ calcd 288.1599 for $C_{17}H_{21}NO_3$]. X-ray structure: Colorless needle, $0.60 \times 0.14 \times 0.14$ mm³, $C_{17}H_{21}NO_3$. Monoclinic, $P2_1$, a = 11.1885(14), b = 5.4166(6), c = 13.1885(15) Å, $\beta = 108.267(9)^\circ$, Z = 2, $\rho_{calc} = 1.257$ g cm⁻³. A set of 3033 reflections was collected using Mo-K_{α} radiation (λ = 0.71073 Å), corresponding to $2\theta_{\text{max}} = 52.5^{\circ}$, and 1706 independent reflections ($R_{int} = 0.029$) were used for the refinement of 191 parameters, without neither restraints nor constraints (SHELXTL 5.10 package). H atoms were placed in idealized positions and refined using a riding model. Final R indices: $R_1 = 0.035$ for 1379 reflections with $I > 2\sigma(I)$ and $wR_2 = 0.092$ for all data. The absolute configuration for the chiral centers was assigned assuming that the configuration of the chiral starting material was unchanged during the synthesis. CCDC deposition number: 278746. Structure factors and raw files are available on request to authors.