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An efficient one-pot protocol for the direct conversion of free base 5,15-disubstituted porphyrins into the
corresponding meso activated alkenyl-substituted meso-formylporphyrins has been developed using a
sequential SNAr reaction with PyMe2SiCH2Li, conjugate addition to enones or alkenoates in the presence
of TMSCl, and oxidation with DDQ.
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Interest in the chemistry of porphyrins and related tetrapyrrolic
macrocycles has increased greatly in recent years, since these com-
pounds have potentially important applications in many areas of
chemistry, biology, and material sciences,1 serving as, for example,
homogeneous catalysts,2 medicines for photodynamic therapy
(PDT),3 materials for nonlinear optics (NLO) and solar energy con-
version systems,4 and synthetic receptors for various organic and
inorganic species.5 Therefore, immense effort has been devoted
to the development of novel and efficient synthetic strategies
and intermediates for the preparation of porphyrin derivatives
with a variety of peripheral substituents.6,7 In this context, ‘multi-
functional porphyrins’ that possess two or more different reactive
functional groups, such as carbonyl, halogenic, alkenyl, and alkynyl
groups, on the porphyrin core would be particularly attractive
starting materials for further manipulation to construct more com-
plex porphyrin derivatives, because each functional group, which is
directly attached to the ring, can be individually replaced with
other functionalities. Despite significant advances in the synthetic
pathways and strategies in the field of porphyrin chemistry, only a
limited number of general methods have been developed for the
direct introduction to the porphyrin core of more than one reactive
functional group, even with two functionalities, giving distinct
reactivity.8

Recently, we reported an efficient one-pot procedure for the
direct conversion of 5,15-disubstituted free base porphyrins into
ll rights reserved.

.
anami).
the corresponding meso acyl-substituted meso-formylporphy-
rins.7a As shown in Scheme 1, this one-pot asymmetric bifunc-
tionalization of free base porphyrins involves a sequential
nucleophilic substitution (SNAr reaction)9 of porphyrins 1 with (2-
pyridyldimethylsilyl)methyllithium(PyMe2SiCH2Li),10 followed by
trapping of the resulting anion A with acylchlorides (R0COCl) as
an electrophile and oxidation with DDQ, where the PyMe2SiCH2

group works as a latent formyl functionality in the reaction.7b

As a follow-up of our work, we chose a,b-unsaturated carbonyl
compounds as an electrophile in the asymmetric bifunctionaliza-
tion of porphyrins based on the SNAr strategy with PyMe2SiCH2Li.
Herein, we report the first example of an efficient direct
R
PyMe2SiCH2Li

Scheme 1. Our previous work on one-pot preparation of meso-acyl-substituted
meso-formylporphyrins.

http://dx.doi.org/10.1016/j.tetlet.2011.08.025
mailto:takanami@my-pharm.ac.jp
http://dx.doi.org/10.1016/j.tetlet.2011.08.025
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


N

NH N

HN

Ph

Ph

N

NH N

HN

Ph

Ph

H

O
PyMe2SiCH2Li
(10 equiv)

1a

2) 0.1M HCl, 0 °C
3) DDQ (10 eq), rt

ether, -78 °C → rt
O

3aa

+ TMSCl1) 2a
(15 equiv)

(20 equiv)

O

THF, -78 °C → rt

N
NHN
HN

Ph

Ph

H

OO

N
NH N
HN

Ph

Ph
H

OHO

4aa 5aa

or

Scheme 2. One-pot direct conversion of 5,15-diphenylporphyrin 1a to meso activated alkenyl-substituted meso-formylporphyrin 3aa using cyclopentenone 2a as an
electrophile.

Table 1
Scope of 5,15-disubstituted porphyrins 1 and a,b-unsaturated carbonyl compounds 2 for the one-pot preparation of meso activated alkenyl-substituted meso-formylporphyrins 3a
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a The numbers in the parentheses are isolated yields.
b E-isomer was isolated.
c Isolated yields after conversion of the crude products into the corresponding Ni(II) complexes (see, Ref. 14).
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Scheme 3. Plausible reaction pathways for the one-pot direct conversion of 5,15-disubstituted porphyrins to the corresponding meso activated alkenyl-substituted meso-
formylporphyrins.
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introduction of a formyl group and an activated alkenyl substitu-
ent onto the porphyrin core at the meso-position in a simple one-
pot procedure.

We began our studies by evaluating the asymmetric bifunction-
alization of 5,15-diphenylporphyrin 1a with PyMe2SiCH2Li and
2-cyclopentene-1-one 2a using similar reaction conditions to those
previously reported for the one-pot synthesis of meso acyl-
substituted meso-formylporphyrins.7a Thus, a solution of porphyrin
1a in THF was treated in the following order: PyMe2SiCH2Li
(10 equiv) at�78 �C to rt, an ethereal solution of enone 2a (15 equiv)
and TMSCl (20 equiv) at �78 �C to rt, diluted aqueous HCl at 0 �C,11

and then DDQ (10 equiv) at rt. As shown in Scheme 2, we unexpect-
edly did not obtain either the corresponding Michael type adduct
4aa via 1,4-addition or the alcohol derivative 5aa via 1,2-addition,
but did obtain the enone moiety directly coupled adduct, meso acti-
vated alkenyl-substituted meso-formylporphyrin 3aa, as the sole
isolable product in 71% yield. In this reaction, TMSCl was found to
be essential as the additive for the formation of 3aa; any attempt
without TMSCl gave only a trace amount of the Michael adduct
4aa as an isolable product, along with an inseparable complex prod-
uct mixture.12 When TMSCl was replaced by other silylating agents,
such as TESCl, TBSCl, and TMSOTf, significant deterioration in the
yields of 3aa (<30%) was observed.

Next, we investigated the scope of the above procedure using a
range of 5,15-disubstituted porphyrins and a,b-unsaturated car-
bonyl compounds as substrates, and the representative results
obtained are summarized in Table 1.13–15 It was found that not only
cyclic enones, 2a and 2b, but also an acyclic enone 2c could readily
participate in the asymmetric bifunctionalization of diphenylporph-
yrin 1a to afford the corresponding meso activated alkenyl-substi-
tuted meso-formylporphyrins 3aa, 3ab, and 3ac in good yields.
However, sterically hindered enones appear to be a current
limitation of our method, as 2-methylcyclopentenone 2d and
4-methylcyclohexenone 2e did not afford the desired products
3ad and 3ae, giving low yields (<20%) of meso-formylated diph-
enylporphyrin instead. This protocol is not limited to enones; both
cyclic and acyclic alkenoates, 2f and 2g, were also compatible with
the one-pot asymmetric bifunctionalization, furnishing the desired
products 3af and 3ag in acceptable yields. Other porphyrins
including 5,15-diarylporphyrins, 1b–1e, of which the substituent
on the phenyl ring is Me, MeO, CH2@CH, and CF3, and 5,15-
dialkylporphyrin 1f were evaluated next and also found to be good
substrates for the present one-pot protocol; the corresponding
meso-formylporphyrins substituted with enone and alkenoate moi-
eties at the meso-position were obtained in good to moderate yields.

Mechanistically, we believe that the reaction proceeds via a
porphodimethene derivative 6 bearing a PyMe2SiCH2 group and
an enol silyl ether moiety on the sp3 carbons of the ring
(Scheme 3). Thus, anionic intermediate A, generated from the SNAr
reaction of porphyrin 1 with PyMe2SiCH2Li, undergoes conjugate
addition to a,b-unsaturated carbonyl compound 2 in the presence
of TMSCl to give the porphodimethene derivative 6,16 of which the
silylmethyl group, enol silyl ether moiety, and porphodimethene
ring are in turn oxidized with DDQ into the formyl group, the en-
one or alkenoate moiety, and the porphyrin core, respectively,
leading to the final product 3, although the precise order of these
oxidation reactions is not yet clear.17 This reaction process pro-
vides a satisfying explanation for the failure to obtain the desired
activated alkenyl-substituted product 3 in the reaction performed
without TMSCl (vide supra), which cannot create the porphodi-
methene intermediate 6 with an enol silyl ether substituent.
Further experiments are currently underway to elucidate the reac-
tion process in more detail.

In summary, direct introduction of an activated alkenyl substi-
tuent and a formyl group onto the meso carbons of free base 5,
15-disubstituted porphyrins can now be realized using a simple
one-pot procedure that involves a sequential SNAr reaction with
PyMe2SiCH2Li, conjugate addition to enones or alkenoates in the
presence of TMSCl, and oxidation with DDQ. This one-pot protocol
operates efficiently under mild conditions, can be applied to free
base porphyrins, and is suitable for cyclic and acyclic alkenoates
as well as enones. Most notably, unprecedented, formal direct cou-
plings between enones or alkenoates and porphyrins at the meso-
positions take place during the reaction to provide meso activated
alkenyl-substituted meso-formylporphyrins, which has never been
achieved by known porphyrin functionalization.18 These asymmet-
rically bifunctionalized porphyrins, of which reactive functional
groups at the meso-positions can be readily and individually
replaced by a variety of other functionalities, will serve as versatile
synthetic precursors in subsequent transformations for the con-
struction of more complex porphyrin systems that could have
potential applications. Further work to extend the porphyrin func-
tionalization based on the SNAr strategy with PyMe2SiCH2Li is
underway in our laboratory.
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