

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 18 (2008) 2725-2729

Synthesis and characterization of 1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives: Part 3. New potent non-competitive metabotropic glutamate receptor 2/3 antagonists

Thomas J. Woltering,^{a,*} Jürgen Wichmann,^a Erwin Goetschi,^a Geo Adam,^a James N. C. Kew,^{b,†} Frédéric Knoflach,^b Theresa M. Ballard,^b Jörg Huwyler,^{c,‡} Vincent Mutel^{b,§} and Silvia Gatti^b

^aF. Hoffmann-La Roche Ltd., Pharma Discovery Chemistry CNS, CH-4070 Basel, Switzerland ^bF. Hoffmann-La Roche Ltd., Pharma Research CNS, CH-4070 Basel, Switzerland ^cF. Hoffmann-La Roche Ltd., Pharma Research DMPK, CH-4070 Basel, Switzerland

> Received 1 February 2008; revised 28 February 2008; accepted 29 February 2008 Available online 5 March 2008

Abstract—A series of 1,3-dihydro-benzo[*b*][1,4]diazepin-2-one derivatives was evaluated as non-competitive mGluR2/3 antagonists. Replacement of the (2-aryl)-ethynyl-moiety in 8-position with smaller less lipophilic substituents produced compounds inhibiting the binding of [3H]-LY354740 to rat mGluR2 with low nanomolar affinity and consistent functional effect at both mGluR2 and mGluR3. These compounds were able to reverse LY354740-mediated inhibition of field excitatory postsynaptic potentials in the rat dentate gyrus and in vivo activity could be demonstrated by reversal of the LY354740-induced hypoactivity in mice after oral administration.

© 2008 Elsevier Ltd. All rights reserved.

The family of metabotropic glutamate receptors consists of eight subtypes, classified into three groups according to their sequence homology, pharmacology, and second messenger coupling.¹ Group I receptors (mGluR 1 and 5) are positively coupled to phospholipase C, whereas group II (mGluR2 and 3) and group III (mGluR4, 6, 7 and 8) receptors are negatively coupled to the activity of adenyl cyclase. Ligands for the different mGluR's are under development for the treatment of different CNS disorders, such as Parkinson's disease, anxiety and schizophrenia.² It was recently shown that while mGluR2/3 agonists exhibit anxiolytic and antipsychotic properties, mGluR2/3 antagonists may be useful as antidepressants, cognitive enhancers and to inhibit the growth of malignant gliomas.^{3,4}

We recently reported the discovery of the random screening hit (8-methyl-4-phenyl-1,3-dihydro-benzo[*b*][1,4]diazepin-2-one), its characterization as a non-competitive antagonist at both mGluR2 and mGluR3 and the lead optimization program to obtain compounds like **3**, with low nanomolar affinity assessed by displacement of [³H]-LY354740 binding to rat mGluR2 and ability to reverse LY354740-mediated inhibition of field excitatory postsynaptic potentials in the rat dentate gyrus in vitro (Fig. 1).⁵ The present study describes the optimization of orally active, brain penetrating, in vivo active compounds, and their pharmacological profiling.

The regioselective synthesis of unsymmetrically 7,8substituted 1,3-dihydro-benzo[b][1,4]diazepin-2-ones has already been described.^{6,7} Simple condensation of mono Boc protected 1,2-phenylenediamines **4** and *tert*butyl β -ketoesters **5** in refluxing toluene led to the corre-

Keywords: Metabotropic glutamate receptors; 1,3-Dihydro-benzo [*b*][1,4]diazepin-2-one; mGluR2 antagonist; LY354740; In vivo activity; Mice.

^{*} Corresponding author. Tel.: +41 616880407; fax: +41 616888714; e-mail: thomas.woltering@roche.com

[†] Present address: GlaxoSmithKline, New Frontiers Science Park North Harlow, Essex CM19 5AW, UK.

[‡] Present address: Fachhochschule Nordwestschweiz Hochschule für Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland.

[§] Present address: Addex Pharmaceuticals SA, 12 Chemin des Aulx, CH-1228 Plan-les-Ouates, Switzerland.

Figure 1. Development of the random screening hit 1 into compounds, like, for example, 2 and 3, with low nanomolar affinity in inhibition of $[^{3}H]$ -LY354740 binding to rat mGluR2.⁵

Scheme 1. Regioselective synthesis of unsymmetrically 7,8-substituted 1,3-dihydro-benzo[b][1,4]diazepin-2-ones 7. Reagents and conditions: (a) toluene, reflux; (b) TFA [optional anisole], DCM, rt.

Compound	R ^{3′}	R ⁸	R ⁷	$c \log P$	Rat mGluR2	Rat mGluR2 (1S,3R)-ACPD
					[³ H]-LY354740	inhibition of Forskolin stimulated
					binding, IC_{50} (μM)	camp, IC_{50} (μM)
3	1-Imidazolyl	$4\text{-}FC_6\text{H}_4C\equiv C$	HO	3.85	0.026	0.011
7a	1-Imidazolyl	Ph	Н	4.43	0.039	0.047
7b	1-Imidazolyl	$4-F-C_6H_4-$	Н	4.62	0.017	0.024
7c	1-Imidazolyl	$2-F-C_6H_4-$	Н	4.62	0.012	0.027
7d	1-Imidazolyl	$3-F-C_6H_4-$	Н	4.62	0.025	nt
7e	1-Imidazolyl	2,5-di-F-C ₆ H ₃ -	Н	4.78	0.007	0.017
7f	1-Imidazolyl	$2-F-C_6H_4-$	HO	3.48	0.022	nt
7g	1-Imidazolyl	cyclo-Propyl	Н	3.48	0.210	nt
7h	1-Imidazolyl	Br	Н	3.66	0.072	nt
7i	1-Imidazolyl	F_3C-	Н	3.87	0.043	nt
7j	1-Imidazolyl	F_3C-	Me ₂ N	4.13	0.009	0.052
7k	1-Imidazolyl	F_3C-	iso-ButylNH	5.04	0.019	0.073
71	1-Imidazolyl	F_3C-	Cl	4.48	0.017	0.015
7m	1-Imidazolyl	F_3C-	Me	4.37	0.012	0.019
7n	1-Imidazolyl	F ₃ C-	Et	4.90	0.004	0.010
7o	1,2,3-Triazolyl	$4-F-C_6H_4-$	Н	4.61	0.031	0.036
7p	1,2,3-Triazolyl	$2-F-C_6H_4-$	Н	4.61	0.016	0.037
7q	1,2,3-Triazolyl	2,5-di-F-C ₆ H ₃ -	Н	4.77	0.017	0.018
7r	1,2,3-Triazolyl	iso-Propyl	Н	3.96	0.466	nt
7s	1,2,3-Triazolyl	Br	Н	3.65	0.130	nt
7t	1,2,3-Triazolyl	Cl	Н	3.50	0.060	nt
7u	1,2,3-Triazolyl	F_3C-	Н	3.86	0.092	nt
7v	1,2,3-Triazolyl	F_2CH-	Н	2.73	0.608	nt
7w	1,2,3-Triazolyl	F ₃ CCH ₂ O-	Н	3.89	0.070	nt
7x	1,2,3-Triazolyl	F_3C-	Me ₂ N	4.12	0.038	0.184
7y	1,2,3-Triazolyl	F ₃ C-	iso-ButylNH	5.03	0.042	0.268
7z	1,2,3-Triazolyl	F_3C-	iso-ButylN(Me)	5.58	0.011	0.014
7aa	1,2,3-Triazolyl	F ₃ C-	Cl	4.47	0.027	0.116
7ab	1,2,3-Triazolyl	F ₃ C-	Me	4.36	0.009	0.039
7ac	1,2,3-Triazolyl	F ₃ C-	MeO	3.91	0.029	0.074
7ad	1,2,3-Triazolyl	F ₃ C-	EtO	4.44	0.007	0.034

Table 1. Structure-activity-relationship of the new 1,3-dihydro-benzo[b][1,4]diazepin-2-ones 7 reported in this study

 $R^{3'}$, R^7 and R^8 refer to the positions of R's in Scheme 1. nt, not tested.

^a Values are means of at least 2 independent experiments.

^b Values are means of 3 independent experiments.

sponding β -ketoamides **6**. We found that the *tert*-butyl β -ketoester was superior to the corresponding ethyl ester in this condensation reaction, probably due to its ability of reacting through a ketene mechanism. Deprotection and concomitant cyclization were achieved by treatment with TFA yielding the unsymmetrically 7,8-substituted 1,3-dihydro-benzo[*b*][1,4]diazepin-2-ones 7 (Scheme 1).

We reported that 5-membered heterocycles were suitable replacements for the cyano group, especially the employment of 1-imidazoles and 1,2,3-triazoles lead to very potent mGluR2/3 antagonists.^{5b} Although these modifications improved the physico-chemical properties of the compounds they remained quite lipophilic (2: $c\log P$ 4.44; calculated $\log(c_{octanol}/c_{water})$; 3: $c\log P$ 3.85). Therefore we sought for further alteration of the substituents enabling the in vivo evaluation of compounds from this class in an mGlu2 receptor-mediated behavioral test. Our main focus was the search for a suitable—preferably smaller—replacement for the (2-aryl)-ethynyl-moiety in 8-position.

Omitting the acetylene linker and using fluorinated phenyl groups produced compounds 7a-f, which proved to be equipotent to 3 (Table 1). In the cases of simple halides, Br (7h and 7s) appeared to be less effective than Cl (7t). Employing alkyl groups like cyclopropyl (7g) and isopropyl (7r) resulted in ~10- to 20-fold loss of affinity. Interestingly, introducing fluorinated alkyl groups a remarkable ~7-fold advantage of trifluoromethyl over difluoromethyl was observed (7u versus 7v). The 2,2,2-trifluoroethoxy group was also tolerated (7w). In order to increase the potency of the compounds

Table	2.	IC_{50}	values	for	GIRK	current	inhibition	by	selected
compo	oun	ds in	CHO ce	lls ex	pressing	mGluR2	and mGlu	R3 1	receptors

Compound	Rat mGluR2 GIRK inhibition ^a , IC ₅₀ (μM)	Rat mGluR3 GIRK inhibition ^a , IC_{50} (μ M)
3	0.024	nt
7b	0.299	0.017
7c	0.011	0.033
7f	0.035	0.122
7p	0.022	0.042

^a Values are means of 3–5 independent experiments, (nt = not tested).

while maintaining a small molecule size we kept the 8-(trifluoromethyl) group and attached additional small alkyl, alkoxy, and alkylamino groups as well as Cl in the adjacent 7-position. Overall, a significant enhancement in activity was observed (\sim 2- to 9-fold for 7j–n versus 7i and \sim 2- to 13-fold for 7x–ad versus 7u).

In conclusion the (2-aryl)-ethynyl-moiety in the 8-position could most effectively be replaced by a 2-fluorophenyl group or the combination of a trifluoromethyl group in 8-position together with a small alkyl or alkoxy group in 7-position.

The closest derivative to 3 and most polar compound 7f $(c \log P \ 3.48)$ was not suitable for in vivo evaluation, since it revealed high clearance in rat microsomes (~100 mL/min/kg, MAB ~20%), whereas 7c and 7p are metabolically stable compounds (MAB 93% and 100%). Therefore only the reduction in size could be achieved but not in lipophilicity (7c: $c \log P \ 4.62$; 7p: $c \log P \ 4.61$; 7n: $c \log P \ 4.90$; 7ab: $c \log P \ 4.36$; 7ad: $c \log P \ 4.44$).

The pharmacological properties of these compounds were consistent with a mechanism of non-competitive antagonism at both mGluR2 and mGluR3 as previously described demonstrated by partial inhibition of the binding of the selective agonist [3H]-LY354740 to rat mGluR2, full blockade of the effect of LY354740, (1S,3R)-ACPD and L-glutamate in both GTP γ S and cAMP assays and inhibition of the glutamate-induced GIRK current. Table 1 summarizes the IC₅₀ values calculated for each compound in affinity studies (partial displacement of 10 nM [³H]-LY354740) and concentration dependent blockade of (1S,3R)-ACPD (10 µM-EC₉₀) induced inhibition on intracellular cAMP levels (Forskolin 10 µM, n:3 for each value) in the experimental conditions described earlier.⁵ In this chemical series the effect of all the tested compounds does not seem to vary depending on the mGluR2 agonist under study.

For representative compounds we have determined the $IC_{50}s$ for the GIRK inhibition at both rat mGluR2 and mGluR3 (Table 2). The concentration response curves of the antagonistic properties of 7c (a) and 7p (b) are shown in Figure 2. All compounds were potent

Figure 2. Concentration-response curves for the inhibition of GIRK currents by 7c and 7p in CHO cells stably expressing GIRKs and transiently transfected with rat mGluR2 (\bigcirc) and rat mGluR3 (\bullet) and stimulated with L-glutamate (10 µM). (a) 7c: mGluR2 IC₅₀ = 11 nM, mGluR3 IC₅₀ = 33 nM. (b) 7p: mGluR2 IC₅₀ = 22 nM, mGluR3 IC₅₀ = 42 nM.

Figure 3. Reversal of mGluR2-mediated inhibition of synaptic transmission (fEPSP) evoked by stimulation of the medial perforant path input to the dentate gyrus mid-moleculare by **7c** (0.1 μ M) and by **7p** (0.1 μ M) in presence of the mGluR2/3 agonist LY354740 (1 μ M). (a) ..., **7c** (0.1 μ M), — LY354740 (1 μ M), – wash-out period; mean ± SE, n = 6. (b) **7p** (0.1 μ M), — LY354740 (1 μ M), – wash-out period; mean ± SE, n = 3.

group II mGluR antagonists, with a slight preference for the mGluR2.

We also assessed in vitro the selectivity of 7p on group I and group III mGluRs, respectively: rat mGluR1a, mGluR5a (using a Ca²⁺ mobilization functional assay) and rat mGluR8a (displacement studies with [³H]-L-AP4) (with 7p tested at 30 μ M final concentration). In addition 7p was devoid of any affinity at ionotropic glutamate receptors and GABA_A receptors (data not shown).

Using compounds 7c and 7p we could also demonstrate antagonism at native group II metabotropic glutamate receptors by reversal of LY354740-mediated inhibition of fEPSPs in the dentate gyrus in vitro (Fig. 3).⁸ Complete reversal was observed in the case of 7c while only partial reversal could be measured in the case of 7p. This is possibly related to the poor solubility of 7p in the experimental conditions used for this study and it does not correspond to the observations in other functional assays where it always exhibited complete blockade of the effects of the mGluR2/3 agonists.

To evaluate the drug-drug-interaction (DDI) potential we measured the binding to cytochrome P450 3A4 isoenzyme. Not surprisingly 7c and 7f—bearing the wellknown 1-imidazolyl pharmacophore for CYP450 3A4—were strong inhibitors with an $IC_{50} \sim 1 \text{ nM}$, whereas 7p showed only weak activity ($IC_{50} = 4.3 \mu M$).

For compounds **7c** and **7p** a single dose pharmacokinetic (SDPK) assessment in rats at 10 mg/kg p.o. was performed and plasma and brain concentration measurements after 1.5 h revealed for **7c** 2656 ng/mL and 1344 ng/mL (brain/plasma 0.5) and for **7p** 1423 and 1060 ng/mL, respectively (brain/plasma 0.9, CSF/plasma 0.5%) (4 animals/group).⁹

Figure 4. Spontaneous locomotor activity in C57BL/6J mice (total horizontal activity counts in 30 min): reversal of LY354740-induced hypoactivity by compounds **7c** and **7p**. Dose–response measurements of **7c** (a) and **7p** (b) suspension prepared in 0.3% Tween 80 v/v saline (at 3, 10 and 30 mg/kg p.o.) revealed for **7c** (a) an ED₅₀ = 12.5 mg/kg p.o. (n = 8 mice/group; ANOVA p < 0.0001; *p < 0.05, ***p < 0.001 versus veh. + veh.; ##p < 0.01 versus veh. + LY354740) and for **7p** (b) an ED₅₀ = 3.3 mg/kg p.o. (n = 8 mice/group; ANOVA p < 0.01; *p < 0.05 versus veh. + veh.; #p < 0.0

2729

Consistent with the in vivo exposure and the brain penetration data are the in vivo antagonistic properties of both **7c** and **7p** when administered per os by gavage in mice (Fig. 4).⁹ The mGluR2/3 agonist LY354740 produces a dose-dependent decrease of the horizontal activity after intraperitoneal administration (1–30 mg/kg, 30 min prior to testing) in mice. The experimental conditions of this test have been validated for the contribution of mGluR2 using mGluR2 null mutant mice.^{3,10} The p.o. administration of either **7c** or **7p** 1 h prior to the mGluR2/3 agonist (15 mg/kg i.p.) was able to block completely the hypoactivity caused by the administration of LY354740. It should be noted that neither **7c** nor **7p** caused a significant increase in locomotor activity when administered alone.

In summary, by replacement of the (2-aryl)-ethynyl-moiety in 8-position with smaller less lipophilic substituents we were able to develop a series of in vivo active 1,3dihydro-benzo[*b*][1,4]diazepin-2-one derivatives. These compounds are selective, non-competitive antagonists at recombinant (inhibiting the binding of [³H]-LY354740 to rat mGluR2 with low nanomolar affinity) and native (reversal of LY354740-mediated inhibition of fEPSPs in the dentate gyrus) group II metabotropic glutamate receptors, they are orally active and brain penetrating and also exhibit in vivo activity by reversal of the LY354740-induced hypolocomotion in mice.

Acknowledgments

We cordially thank G. Achermann, J. Beck, N. Benedetti, D. Buchy, S. Chaboz, M. Dellenbach, N. Grossmann, R. Haab, A. Maier, A. Nilly, P. Oberli, M.-C. Pflimlin, P. Reindl[†], H. Schär, M. Weber and R. Wyler for their skilful technical assistance.

References and notes

 Reviews (a) Gasparini, F.; Spooren, W. Current Neuropharmacology 2007, 5, 187; (b) Monn, J. A.; Johnson, M. P.; Schoepp, D. D. In Handbook of Contemporary Neuropharmacology; Sibley, D. R., Ed.; John Wiley & Sons, Inc.: Hoboken, 2007; Vol. 1, pp 421–464; (c) Neugebauer, V. Handbook of Experimental Pharmacology 2007, 177, 217; (d) Oswald, R. E.; Ahmed, A.; Fenwick, M. K.; Loh, A. P. Current Drug Targets 2007, 8, 573; (e) Ossowska, K. Dopamine and Glutamate in Psychiatric Disorders 2005, 117; (f) Ferraguti, F.; Shigemoto, R. Cell & Tissue Research 2006, 326, 483; (g) Schoepp, D. D.; Jane, D. E.; Monn, J. A. Neuropharmacology 1999, 38, 1431.

- (a) Récasens, M.; Guiramand, J.; Aimar, R.; Abdulkarim, A.; Barbanel, G. Current Drug Targets 2007, 8, 651; (b) Swanson, C. J.; Bures, M.; Johnson, M. P.; Linden, A.-M.; Monn, J. A.; Schoepp, D. D. Nature Reviews. Drug Discovery 2005, 4, 131; (c) Higgins, G. A.; Miczek, K. A. Psychopharmacology 2005, 179, 1; (d) Mutel, V. Expert Opinion on Therapeautic Patients 2002, 12, 1845.
- (a) Spinelli, S.; Ballard, T.; Gatti-McArthur, S.; Richards, G. J.; Kapps, M.; Woltering, T.; Wichmann, J.; Stadler, H.; Feldon, J.; Pryce, C. R. *Psychopharmacology* 2005, *179*, 292; (b) Higgins, G. A.; Ballard, T. M.; Kew, J. N. C.; Richards, J. G.; Kemp, J. A.; Adam, G.; Woltering, T.; Nakanishi, S.; Mutel, V. *Neuropharmacology* 2004, *46*, 907.
- Nicoletti, F.; Battaglia, G.; Storto, M.; Ngomba, R. T.; Iacovelli, L.; Arcella, A.; Gradini, R.; Sale, P.; Rampello, L.; De Vita, T.; Di Marco, R.; Melchiorri, D.; Bruno, V. *Psychoneuroendocrinology* **2007**, *32*, S40.
- (a) Woltering, T. J.; Adam, G.; Alanine, A.; Wichmann, J.; Knoflach, F.; Mutel, V.; Gatti, S. *Bioorganic & Medicinal Chemistry Letters* 2007, *17*, 6811; (b) Woltering, T. J.; Adam, G.; Wichmann, J.; Goetschi, E.; Kew, J. N. C.; Knoflach, F.; Mutel, V.; Gatti, S. *Bioorganic & Medicinal Chemistry Letters* 2008, *18*, 1091.
- Hemstapat, K.; Da Costa, H.; Nong, Y.; Brady, A. E.; Luo, Q.; Niswender, C. M.; Tamagnan, G. D.; Conn, P. J. *The Journal of Pharmacology and Experimental Therapeutics* 2007, 322, 254.
- (a) Adam, G.; Alanine, A., Goetschi, E.; Mutel, V., J.; Woltering, T. J. World Patent WO01/29011, 2001; *Chem. Abstr.* 2001, 134, 311234; (b) Adam, G.; Alanine, A., Goetschi, E.; Mutel, V., J.; Woltering, T. J. World Patent WO01/29012, 2001; *Chem. Abstr.* 2001, 134, 311235; (c) Adam, G.; Goetschi, E.; Mutel, V.; Wichmann, J.; Woltering T. J. World Patent WO02/083652, 2002; *Chem. Abstr.* 2002, 137, 325447; (d) Adam, G.; Goetschi, E.; Mutel, V.; Wichmann, J.; Woltering T. J. World Patent WO02/083665, 2002; *Chem. Abstr.* 2002, 137, 325438.
- Kew, J. N. C.; Ducarre, J.-M.; Pflimlin, M.-C.; Mutel, V.; Kemp, J. A. *Neuropharmacology* 2001, 40, 20.
- 9. The experimental procedures used in the present investigation received prior approval from the City of Basel Cantonal Animal Protection Committee based on adherence to federal and local regulations.
- (a) Spooren, W.; Gasparini, F.; van der Putten, H.; Koller, M. I. S.; Nakanishi, S.; Kuhn, R. *European Journal of Pharmacology* 2000, 397, R1; (b) Ballard, T. M.; Kew, J. N. C.; Richards, J. G.; Woltering, T. J.; Adam, G.; Nakanishi, S.; Kemp, J. A.; Mutel, V.; Higgins, G. A. *Abstract of Papers*, 31st Annual Meeting of the Society for Neuroscience, San Diego, CA; Society for Neuroscience, Washington, DC, 2001; Abstract 705.11.