- ⁷ Forsyth, W. G. C., Biochem. J., 1952, **51**, 511 ⁸ Forsyth, W. G. C., Rep. London Cocoa Conference,

- ^{1053, p. 32} ⁹ Forsyth, W. G. C., *Biochem. J.*, 1955, **60**, 108 ¹⁰ Bate-Smith, E. C., *Biochem. J.*, 1954, **58**, 122 ¹¹ Bate-Smith, E. C., & Lerner, N. H., *Biochem. J.*, 1954, **58**, 126 ¹² Geissman, T. A., & Hinreiner, E. H., *Bot. Rev.*,
- Geissman, I. J., & Martine, 1952, 18, 77
 Posnette, A. F., Nature, Lond., 1947, 159, 500
 Duthie, D. W., Analyst, 1938, 63, 27
 Barton, G. M., Evans, R. S., & Gardner, J. A. F., Nature Lond. 1052, 170, 249

- ¹⁶ Tinsley, T. W., & Usher, G., personal communication
- ¹⁷ Usher, G., personal communication
- 18 Holden, M., & Usher, G., Rep. W. Afr. Cocoa Res. Inst., 1954–55, p. 38
- ¹⁹ Forsyth, W. G. C., Nature, Lond., 1953, 172, 726
- ²⁰ Swain, T., Brit. Food Manufacturing Ind. Res. Ass., Sci. & Tech. Surv., 1954, No. 23
- 21 Bate-Smith, E. C., & Swain, T., Chem. & Ind., 1953, p. 377
- 22 Williams, A. H., Chem. & Ind., 1953, p. 340

THE TOXICITY OF ORGANIC SULPHIDES TO THE EGGS AND LARVAE OF THE GLASSHOUSE RED SPIDER MITE. II.* Miscellaneous Sulphides

By R. F. BROOKES, J. E. CRANHAM, D. GREENWOOD and H. A. STEVENSON

The activities against the eggs and young mites of the glasshouse red spider (Tetranychus telarius L.) shown by a number of compounds, all containing two benzene nuclei linked by various sulphur-containing bridges, are tabulated and discussed.

Introduction

The method used for laboratory testing of a series of SS'-disubstituted alkane- $\alpha\omega$ -dithiols against the red spider mite has already been described.¹ Two of the most active compounds of this series (bisphenylthiomethane and I: 2-bisphenylthioethane) were tested in the field and found to be phytotoxic. The activity against the red spider mite, however, was sufficient to warrant further synthesis of similar compounds in the hope of discovering a non-phytotoxic substance which retained the activity against the mites. All of the compounds tested consisted of two benzene nuclei linked by some variation of the sulphur-containing bridge.

As with the work already described, the present work formed part of a larger programme involving further tests on promisingly active compounds.

Experimental

Synthesis of compounds

A. Benzyl thiolobenzoates.—This series of compounds was prepared by the action of the appropriate benzovl chloride on an alkali-metal salt of the substituted phenylmethanethiol.

B. Disulphides.—The phenyl disulphides were prepared by oxidation of the corresponding thiols or by reduction of the sulphonyl chlorides, and the benzyl disulphides were obtained from the appropriate benzyl halides and sodium disulphide.

C. Aryl phenylthioloacetates.—These substances were prepared from the appropriately substituted arylacetyl chlorides and arenethiols in the presence of alkali.

D. Aryl phenacyl sulphides.—Similarly obtained by the action of a phenacyl halide on an alkali-metal salt of an arenethiol.

E. Aryl thiolobenzoates.—From the benzovl chloride and arenethiol.

F. Sulphides.—The unsymmetrical sulphides were usually prepared from the appropriate thiols and halides but 2-hydroxy-2-phenylethyl phenyl sulphide (Ref. No. 3353) was obtained by the Ponndorf reduction of phenyl phenacyl sulphide.

G. Bis-sulphides.-By the action of the appropriate dihalide on the alkali-metal salt of a thiol.

* Part I: J. Sci. Fd Agric., 1957, 8, 31

J. Sci. Food Agric., 8, October, 1957

562 BROOKES et al.—TOXICITY OF ORGANIC SULPHIDES. II

H. N-Benzyl-N-methylbenzenesulphenamides.—Prepared by the reaction of an arenesulphenyl chloride (usually prepared *in situ* by the chlorinolysis of the corresponding disulphide in carbon tetrachloride) with the N-methylbenzylamine in the presence of a *tertiary* base (e.g. triethylamine).

Biological methods

The methods of rearing mites and of testing have been described in a previous communication.¹ Compounds were first tested by the dipping technique at 0.1% and 0.025% concentration of the test chemical or, with certain compounds, only at 0.1%. A 'formulation control' of suspension medium only, and a 'standard' acaricide were included in each test. Bisphenylthiomethane was used as the standard.

Results

Table I gives the initial 'total mortality '1 (i.e. kill of eggs and young mites) obtained at 0.1% concentration of each compound, and at 0.025% where carried out, corrected by the method of Finney² for mortality in the 'formulation controls'. The results of further tests on certain active compounds are summarized in Table II.

Discussion of results

The most active groups in laboratory tests were the dibenzyl disulphides and the benzyl thiolobenzoates. No compounds of comparable activity occurred in other groups with the exception of I : 2-dichloro-I : 2-bisphenylthioethylene (Ref. No. 2547). The dibenzyl disulphides were more active than the corresponding diphenyl disulphides or the dibenzyl monosulphides.

Table I

A. Benzyl thiolobenzoates

				-	AC6H4.CO.S.C	m ₂ ·C ₆ m ₄ x			
Ref.	х	Y	%'	Total '	М.р., °с	Formula	An	alysis	Refer-
No.				rtality			Found	Required	ence
			0.1%	0.025%			% C % H	% C % H	
2476	н	H	99	76	37-38	$C_{14}H_{12}OS$		<u> </u>	3
2485	н	p-Cl	100	98	42-43	$C_{14}H_{13}OCIS$	64.1 4.1	64.1 4.2	
2477	<i>p</i> -C1	H	100	92	53-54.5	$C_{14}H_{11}OCIS$	63.9 4.4	64.1 4.2	*
2478	p-Cl	p-Cl	92	62	119-120	$C_{14}H_{10}OCl_2S$	56.6 3.4	56.6 3.4	*
							% N	% N	
2699	Н	p-NO ₂	49	о	92-92.5	$C_{14}H_{11}O_3NS$	5.05	5.1	*
2675	p-NO ₂	Η	100	99	83-84	$C_{14}H_{11}O_{3}NS$	5•3	5.1	*
2753	p-C1	p-NO ₂	21	0	115-115.5	$C_{14}H_{10}O_{3}NCIS$	4.7	4.6	*
2701	p-NO ₂	p-Cl	7	0	74-75	C ₁₄ H ₁₀ O ₃ NCIS	4.75	4.6	*
						T 2 T 2 T 2			

* Prepared by R. F. B.

B. Disulphides

Ref No.	R	% <u>m</u> o 0·1%	' Total ' ortality 0.025%	M.p., ° c or b.p., ° c/mm.	Formula	Ana Found % C % H	lysis Required % C % H	Refer- ence
2139	PhCH,	99	98	70	$C_{14}H_{14}S_{2}$			4
2462	<i>p</i> -FC ₆ H ₄ ⋅CH ₂	99	76	62-63	$C_{14}^{14}H_{12}^{14}F_{2}S_{2}$	59.75 4.3	59.6 4.3	ţţ
2335	p-ClC ₆ H ₄ ·CH ₂	100	66	59 [°]	$C_{14}H_{12}Cl_2S_2$			5
2418	PhCH ₂ ·CH ₂	97	88	188-192/1.5	$C_{16}H_{18}S_2$			6
2013	\mathbf{Ph}	43		61	$C_{12}H_{10}S_{2}$			7
2463	p-FC ₆ H ₄	27		131/1.0	$C_{12}H_8F_2S_2$	57.0 3.2	56·7 3· 15	††
2236	p-ClC ₆ H ₄	52		72	$C_{12}H_8Cl_2S_2$			8
2237	$o-ClC_{6}H_{4}$	5		87-88	$C_{12}H_8Cl_2S_2$			9
2427	$2:4:5-Cl_3C_6H_2$	0	0	148	$C_{12}H_4Cl_6S_2$	34.7 1.2	33.9 0.9	**
1893	$o - AcO \cdot C_6 H_4$	0		57	$C_{16}H_{14}O_{4}S_{2}$	57.35 3.8	57.5 4.2	**
4340	3-NO2-4-NH2-C6H	з 5	3	168-169	$C_{12}H_{10}O_4N_4S_2$			IO
2605	C ₁₀ H ₇ -2	15		139	$C_{20}H_{14}S_{2}$			11
		†† Prep	pared by I	N. G. Clark.	** Prepared	by D. G.		

J. Sci. Food Agric., 8, October, 1957

Table I (contd.)

C. Aryl phenylthioloacetates

XC_6H_4 · CH_2 ·CO·S· C_6H_4Y

Ref.	х	Y	%'	Total '	М.р., °с	Formula		Ana	lysis		Refer-
No.				tality				ind		uired	ence
			0.1%	0.025%			% C	%Н	% C	%Н	
2523	Н	н	26	0	34-35	$C_{14}H_{12}OS$	73.6	5.2	73.7	5.3	*
2534	н	p-Cl	81	29	62-63	$C_{14}H_{11}OCIS$	64 •1	4.0	64.0	4.2	*
2639	p-Cl	H	54	12	59.5-60.5	$C_{14}H_{11}OCIS$	63.7	4.1	64.0	4.2	*
2679	p-Cl	p-Cl	97	53	63-64	$C_{14}H_{10}OCl_2S$	56.2	3.2	56.6	3•4	*
							%	Ν	%	Ν	
2700	н	p-NO,	0	0	69–70	$C_{14}H_{11}O_3NS$	5	-3	5	٠ı	*
2535	p-NO ₂	Ή	0	0	61-61	$C_{14}H_{11}O_3NS$	5	3	5	r	*
2536	$p-NO_2$	p-Cl	\mathbf{P}	о	104–105	$C_{14}H_{10}O_{3}NCIS$	4	•85	4	•55	*
2676	p-Cl	p-NO ₂	26	0	89–90	C ₁₄ H ₁₀ O ₃ NCIS	4	7	4	•55	*

* Prepared by R. F. B. P No assessment due to phytotoxicity

D. Aryl phenacyl sulphides XC_6H_4 ·CO·CH₂·S·C₆H₄Y

Ref. No.	х	Y	mor	Total ' tality	М.р., °с	Formula	Fou	nd	lysis Requ		Refer- ence
2524 2525 2640 2641 2643	H H <i>p</i> -Cl <i>p</i> -Cl <i>p</i> -Cl	H <i>p</i> -Cl H <i>p</i> -Cl <i>p</i> -NO,	$ \begin{array}{c} \overline{0 \cdot 1 \%} \\ 29 \\ 28 \\ 24 \\ 0 \\ 21 \end{array} $	0.025% 0 0 0 0 0 29	53-54 80-81 57-57.5 115-116 138-139	$C_{14}H_{12}OS \\ C_{14}H_{11}OCIS \\ C_{14}H_{11}OCIS \\ C_{14}H_{10}OCIS \\ C_{14}H_{10}OCI_{2}S \\ C_{14}H_{10}O_{3}NCIS$	% C 	% H - - 3.8 3.2 2.9	% C 	% H - - 3 [.] 4 3 [.] 3	12 13 * *
2638 2805 2644	H $p-NO_2$ $p-NO_2$	<i>p</i> -NO ₂ Н <i>p</i> -Cl	0 57 11	0 15 8	118 100–101 104–105	$C_{14}H_{11}O_{3}NS \\ C_{14}H_{11}O_{3}NS \\ C_{14}H_{10}O_{3}NS \\ C_{14}H_{10}O_{3}NClS$	% 	-	% 5 [.] 4.		I4 * *

* Prepared by R. F. B.

E. Aryl thiolobenzoates XC.H.CO·S·C.H.Y

					114 00 5	C61141			
Ref.	x	Y		Total '	M.p., °c	Formula	Ana	Refer-	
No.			mor	tality			Found	Required	ence
			0.1%	0.025%			%С%Н	<u>% C % H</u>	
2442	Н	H	23		55-56	$C_{13}H_{10}OS$	—		15
2441	Н	<i>p-</i> Сl Н	97	36	74-75	C ₁₃ H ₉ OCIS			16
2445	p-C1	H	64	8	81-82	C13H9OCIS	63.0 3.7	62.8 3.6	*
2440	<i>p</i> -C1	p-Cl	\mathbf{P}	0	134-135	$C_{13}H_8OCl_2S$	55.2 2.9	55.0 2.8	*
							% N	% N	
2980	p-NO ₂	p-Cl	98	47	74-75	$\mathrm{C_{13}H_8O_3NClS}$	4.8	4.8	*
		* Pr	epared by	R. F. B.	\mathbf{P} No	assessment due t	o phytotoxicit	y	

F. Sulphides

X·S·Y

Ref. No.	х	Y	moi	Total ' rtality 0.025%	M.p., ° c or b.p., ° c/mm.	Formula	Found	lysis Required %C %H	Re- fer- ence
2495	p-ClC ₆ H ₄	p-CIC ₆ H ₄	100	38	91-92	$C_{12}H_8Cl_2S$			17
2433	PhCH ₂	PhCH ₂	74	II	49-50	$C_{14}H_{14}S$			18
2432	p-ClC ₆ H ₄ •CH ₂	p -ClC ₆ \overline{H}_4 ·CH ₂	98	32	40-42	$C_{14}H_{12}Cl_2S$			5
2464	PhCH ₂ •CH ₂	PhCH ₂ ·CH ₂	75	13	164-166/1.5	$C_{16}H_{18}S$			19
2416	Ph	PhCH ₂ ·CH ₂	16	0	160-162/3.5				20
2469	ϕ -ClC ₆ H ₄	PhCH, CH,	96	36	150-155/1.0	$C_{14}H_{13}CIS$	67.1 5.3	67.5 5.2	†
3151	Ph	PhCH CH	\mathbf{P}	26	150-151/1.5	$C_{14}H_{12}S$	78.5 5.2	79.2 5.7	**
3152	p-ClC ₆ H ₄	PhCH:CH	66	15	164-165/1.0	$C_{14}H_{11}ClS$	67.8 4.0	68.2 4.5	**
3191	\hat{p} -ClC _B H ₄	p-ClC ₆ H ₄ CH:CH	\mathbf{P}	13		$C_{14}H_{10}Cl_2S$	59.4 3.3	59.8 3.55	* *
2406	Ph	PhOCH, CH,	92	19	65-67	$C_{14}H_{14}OS$	73.4 6.3	73.0 6.1	Ť
3353	Ph	PhCH(OH)·CH ₂	30	10	168/2.0	$C_{14}H_{14}OS$	72.85 6.3	73.0 6.1	**
$\dagger P$	repared by B. S.	Jackson **	Prep	ared by	D. G.	P No asses	sment due	to phytotox	icity

J. Sci. Food Agric., 8, October, 1957

			Table	(contd.)								
	G. Bis-sulphides											
X•S•R•S•X												
Ref. No.	х	R	% 'Tota mortali $\overline{0.1\%}$ 0.02	ty_°ć	Formula	Found	lysis Required % C % H	Re- fer- ence				
2547 2956 3750 3751 2221 2362 2388 2051 2052 2957	Ph p-ClC ₆ H ₄ p-ClC ₆ H ₄ p-ClC ₆ H ₄ PhCH ₂ p-ClC ₆ H ₄ ·CH ₂ Ph Ph Ph Ph p-	$\begin{array}{c} \mathrm{CCl};\mathrm{CCl}\\ \mathrm{CCl};\mathrm{CCl}\\ \mathrm{CH}_2\cdot\mathrm{CH}(\mathrm{OH})\cdot\mathrm{CH}_2\\ \mathrm{CH}_2\cdot\mathrm{CH}\mathrm{CH}_2\\ \mathrm{CH}_2\cdot\mathrm{CH}\mathrm{CH}\\ \mathrm{CH};\mathrm{CH}\\ \mathrm{CH}_2\cdot\mathrm{CH}_2\cdot\mathrm{S}\cdot\mathrm{CH}_2\cdot\mathrm{CH}_2\\ \mathrm{CO}\\ \mathrm{CS}\\ \mathrm{CMe}_2 \end{array}$	99 8 82 17 15 88 2 16 94 1 30 - 6 -	8 69–70 3 89–90 3 45	$\begin{array}{c} C_{15}H_{13}Cl_{3}S_{2}\\ C_{16}H_{16}S_{2}\\ C_{16}H_{14}Cl_{2}S_{2}\\ C_{16}H_{14}Cl_{2}S_{2}\\ C_{16}H_{18}S_{3} \end{array}$	$7_{0} \leftarrow 7_{0} + 11$ $44^{\cdot 2} = 2 \cdot 1$ $52^{\cdot 4} = 4^{\cdot 0}$ $49^{\cdot 4} = 3^{\cdot 5}$ $56^{\cdot 2} = 4^{\cdot 0}$ 	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & &$	21 ** *** 22 † 23 24 25 26				
	** Prepared b	y D. G. *** Pr	epared by	J. Fraser	† Prepare	ed by B. S.	Jackson					
	H. N-Benzyl-N-methylbenzenesulphenamides											
		XC	₆ H ₄ ·CH ₂ ·N	(CH ₃)•S•C ₆	H ₄ Y							

				0 3	L (0/ 0	1			
Ref.	Х	Y		Fotal '	М.р., °с	Formula	Ana	alysis	Refer-
No.			mor	tality	or b.p.,		Found	Required	ence
			0.1%	0.025%	° c/mm.		% N	% N	
2601	н	н	19		145-146/1.0	C14H15NS	5.8	6.1	*
2642	p-C1	<i>p</i> -Cl	9		47.5-48	C ₁₄ H ₁₃ NCl ₂ S	4.8	4 · 7	*
2602	p-Cl	p-NO ₂	32		59.5-60.5	C ₁₄ H ₁₃ O ₂ N ₂ SCl	9.2	9.1	*
2740	p-NO ₂	H	19		49.5-50.5	C ₁₄ H ₁₄ O ₂ N ₂ S	10.0	10.2	*
2678	p-NO ₂	p-Cl	41	20	59.0-60.0	$C_{14}H_{13}O_2N_2ClS$	9.1	9·1	*
2600	p-NO ₂	p-NO ₂	17	—	96.5-97.5	$C_{14}H_{13}O_4N_3S$	13.2	13.2	*
				- T)	11				

* Prepared by R. F. B.

Table II

The activity of various organic sulphides against eggs and young mites of red spider (further tests)

Test	Ref.	Substance	% ' Total ' mortality at						
	No.		0.05%	0.025%	0.0125%	0.00625%			
I	2139	Dibenzyl disulphide	100	92					
	2335	Bis-p-chlorobenzyl disulphide	100	52		-			
11	2139	Dibenzyl disulphide		94	87	79			
	2335	Bis-p-chlorobenzyl disulphide		71	36	7			
III	2441	p-Chlorophenyl thiolobenzoate	54	9					
	2388	Bis-2-phenylthiolethyl sulphide	48	4					
	2432	Bis-p-chlorobenzyl sulphide	31	12					
	2433	Dibenzyl sulphide	26	6					
IV	2462	Bis-p-fluorobenzyl disulphide	99	72					
	2418	Bis-2-phenylethyl disulphide	95	85	59				
	2476	Benzyl thiolobenzoate	97	71	48	17			
	2477	Benzyl p -chlorothiolobenzoate	99	79	72	60			
	2485	p-Chlorobenzyl thiolobenzoate	100	94	78				
\mathbf{V}	2469	p-Chlorophenyl 2-phenylethyl sulphide	65	40		·			
	2478	p-Chlorobenzyl p -chlorothiolobenzoate	91	57		-			
	2495	Bis- <i>p</i> -chlorophenyl sulphide	70	21					
VI	2675	Benzyl p-nitrothiolobenzoate	100	100	76	48			
	2547	1 : 2-Dichloro-1 : 2-bisphenylthioethylene	84	82	53	37			
	2957	2:2-Bis-p-chlorophenylthiopropane	62	32	18	6			
VII	2547	ı : 2-Dichloro-ı : 2-bisphenylthioethylene	92	76	48	28			

The benzyl thiolobenzoates (— $CO \cdot S \cdot CH_2$ —) were generally more active than the isomeric aryl phenylthioloacetates (— $S \cdot CO \cdot CH_2$ —) and the corresponding phenyl thiolobenzoates (— $CO \cdot S$ —). The aryl phenacyl sulphides (— $S \cdot CH_2 \cdot CO$ —) were least active.

In comparing the activity of compounds substituted by chlorine in the para position of the

J. Sci. Food Agric., 8, October, 1957

nucleus against the corresponding unsubstituted compounds there was no general rule. Sometimes the unsubstituted compounds were the most active, e.g. dibenzyl disulphide (Ref. No. 2139), 1: 2-dichloro-1: 2-bisphenylthioethylene (Ref. No. 2547) and 1: 2-bisbenzylthioethylene (Ref. No. 2221) were more active than the corresponding nuclear substituted compounds (Ref. Nos. 2335, 2956 and 2362). In other cases, however, the unsubstituted compounds were either inactive or much less active than the para-chlorine-substituted compounds. Thus, phenyl phenylthioloacetate (Ref. No. 2523) and phenyl 2-phenylethyl sulphide (Ref. No. 2416) were less active than the corresponding substituted compounds (Ref. Nos. 2534, 2639, 2679 and 2469). In other active groups—e.g. the benzyl thiolobenzoates and the dibenzyl sulphides—the substituted and the unsubstituted compounds had the same order of activity.

Similar variation is found on comparing the effect on activity of bis-para-chlorination against mono-*para*-chlorination. In the phenyl phenyl thioloacetates, the bis-*para*-chlorinated derivative (Ref. No. 2679) was the most active compound but in the phenyl thiolobenzoates the bis-parachlorinated derivative (Ref. No. 2440) was probably less active than either of the mono-parachlorinated compounds (Ref. Nos. 2441 and 2445). In the benzyl thiolobenzoates the bis- (Ref. No. 2478) and mono-para-chlorinated derivatives had a very similar order of activity.

Eaton & Davies²⁷ found that, in a series of compounds containing two benzene nuclei connected by certain bridging groups, activity to the summer eggs and adults of fruit tree red spider (M. ulmi Koch) could be influenced by substitution in the benzene nuclei. Maximum activity appeared to be associated with chlorine substitution in the *para* position in one nucleus and also with compounds of this type having unsubstituted nuclei. Kenaga²⁸ found with a series of substituted phenyl benzoates, and Kenaga & Hummer²⁹ with a series of substituted phenyl benzenesulphonates, that maximum ovicidal activity (two-spotted spider mite) occurred where both benzene nuclei were substituted with chlorine in the para position.

The present findings show that no general conclusions of this type can be applied to different groups of organic compounds containing two benzene nuclei connected by a bridging group, although they confirm that *para*-chlorination often has a marked effect and may yield more active compounds.

Research Department Boots Pure Drug Co. Ltd. Nottingham

Received 27 February, 1957

References

- Brookes, R. F., Cranham, J. E., Cummings, W. A. W., Greenwood, D., Jackson, B. S., & Stevenson, H. A., J. Sci. Fd Agric., 1957, 8, 31
 Finney, D. J., 'Probit Analysis', 1947 (London: Cambridge Univ. Press)
- ³ Otto, R., & Lüders, R., Ber. dtsch. chem. Ges., 1880, 13, 1283
- ⁴ Märcker, C., *Liebigs Ann.*, 1865, **136**, 75 ⁵ Jackson, C. L., & White, J. F., *Amer. chem. J.*,
- 1880, 2, 158
- ⁶ McMillan, F. H., & King, J. A., J. Amer. chem. Soc., 1948, **70**, 4143 ⁷ Hübner, H., & Alsberg, J., *Liebigs Ann.*, 1870,
- 156, 308
- ⁸ Otto, R., Liebigs Ann., 1867, 143, 100
- ⁹ Friedlander, P., & Mauthner, F., Z. Farb.-u. Textilchem., 1904, 3, 333
 ¹⁰ Challenger, F., & Peters, A. T., J. chem. Soc., 1928,
- 130, 1364 ¹¹ Fries, K., & Schürmann, G., Ber. dtsch. chem. Ges.,
- ¹⁰ 1914, **47**, 1195 ¹² Delisle, A., Ber. dtsch. chem. Ges., 1889, **22**, 306 ¹³ Carmack, I. V. M., J. Amer. chem. Soc., 1946, **68**,
- 1867 14 Waldron, W. R., & Reid, E. E., J. Amer. chem.
- Soc., 1923, 45, 2399
- J. Sci. Food Agric., 8, October, 1957

- 15 Schiller, R., & Otto, R., Ber. dtsch. chem. Ges., 1876, 9, 1634
- ¹⁶ Daccomo, G., Ann. chim. farm., 1891, 14, 1
- ¹⁷ Krafft, F., Ber. dtsch. chem. Ges., 1874, **7**, 1164 ¹⁸ Price, T. S., & Twiss, D. F., J. chem. Soc., 1910,
- 97, 1175 ¹⁹ Denison, G. H., & Condit, P. C., *Industr. Engng*
- ²⁰ Denison, G. 11., d. Collitt, F. C., Thauser, Enging Chem., 1945, **37**, 1162
 ²⁰ v. Braun, J., & Weissbach, K., Ber. dtsch. chem. Ges., 1929, **62B**, 2416
 ²¹ Cusa, N. W., & McCombie, H., J. chem. Soc., 1937,
- p. 767
- 22 Fromm, E., Benzinger, H., & Schafer, H., Liebigs
- ²⁴ Flohmin, E., Benzinger, H., & Schaler, H., Liebigs Ann., 1912, **394**, 325
 ²³ Alexander, J. R., & McCombie, H., J. chem. Soc., 1931, **133**, 1913
 ²⁴ Rivier, M. H., Bull. Soc. chim. Fr., 1907, [iv], 1,
- 733
- 25 Autenrieth, W., & Hefner, H., Ber. dtsch. chem. *Ges.*, 1925, **58**, 2151 ²⁶ du Pont de Nemours & Co., E. I., U.S.P. 2,580,550
- 27 Eaton, J. K., & Davies, R. G., Ann. appl. Biol.,
- ¹⁹⁵⁰, **37**, 471 ²⁸ Kenaga, E. E., *J. econ. Ent.*, 1949, **42**, 999 ²⁹ Kenaga, E. E., & Hummer, R. W., *J. econ. Ent.* 1949, **42**, 996