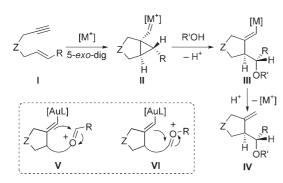
Communications

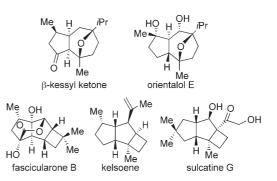

Cyclization

DOI: 10.1002/anie.200601575

Prins Cyclizations in Au-Catalyzed Reactions of Enynes**

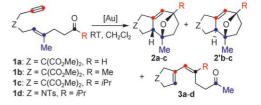
Eloísa Jiménez-Núñez, Christelle K. Claverie, Cristina Nieto-Oberhuber, and Antonio M. Echavarren*

The hydroxy- or alkoxycyclization of enynes **I** catalyzed by electrophilic transition-metal complexes usually takes place through cyclopropyl metal carbenes **II**, which react with nucleophiles R'OH to give intermediates **III** (Scheme 1). The reaction is then terminated by proto-demetalation of the alkenyl metal intermediate **III** to give \mathbf{IV} .^[1,2]


Scheme 1. Different evolution of intermediate **III** by proto-demetalation of the Prins reaction with oxonium cations via **V** or **VI**.

We have now found that in the Au¹-catalyzed cyclization of enynes^[3,4] the alkenyl metal intermediate can be trapped with appropriate substituents, as shown in **V** and **VI** in a Prins cyclization. These new cyclizations allow the one-step synthesis of tricyclic skeletons, such as those of β -kessyl ketone^[5a] and orientalol E (Scheme 2),^[5b] from enynes with carbonyl groups and octahydrocyclobuta[*a*]pentalenes, such as fascicularone B,^[6] kelsoene,^[7] and sulcatine G,^[8] starting from cyclopropyl enynes.

Enynes **1a**–c, bearing a carbonyl group at the alkenyl side chain, are cyclized to give oxatricyclic derivatives **2a**–c and rearranged ketones **3a–c** by using Au^I catalysts (Table 1). The


```
[*] E. Jiménez-Núñez, Dr. C. K. Claverie, C. Nieto-Oberhuber,
Prof. Dr. A. M. Echavarren
Institut Catalá d'Investigació Química (ICIQ)
Av. Països Catalans 16
43007 Tarragona (Spain)
Fax: (+34) 977-920-218
E-mail: aechavarren@iciq.es
```

- [**] We thank the MEC (project CTQ2004-02869 and predoctoral fellowships to E.J.-N. and C.N.-O.), the AGAUR (postdoctoral fellowship to C.K.C.), and the ICIQ Foundation for financial support. We also thank J. Benet-Buchholz (ICIQ) for the X-ray structures of 2c and 5.
- Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

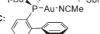
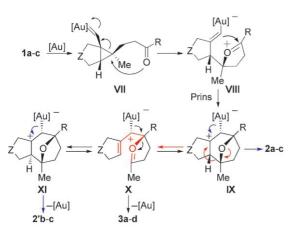

Scheme 2. Representative sesquiterpenes with skeletons accessible by Au-catalyzed cyclizations.

Table 1: Au¹-catalyzed reaction of enynes 1 a-d.^[a]

Entry	Enyne	[Au]	2/2′	Yield [%]	2/2 ′	3	Yield [%]
1	la	Α	2 a	35	>50:1	3 a	50
2	la	В	2a	36	>50:1	3 a	34
3	la	с	2a	29	>50:1	3 a	50
4	la	AuCl	2 a	58	>50:1	3 a	18
5	1 b	Α	2b/2b′	65	2.3:1	3 b	9
6	1 b	В	2 b	47	>50:1	3 b	44
7	1 b	с	2 b	47	>50:1	3 b	52
8	1 b	AuCl	2 b	79	>50:1	3 b	10
9	1c	Α	2c/2c′	64	3.4:1	3 c	22
10	1c	В	2 c	49	>50:1	3 c	45
11	1c	с	2c/2c′	44	26:1	3 c	39
12	1c	AuCl	2 c	84	>50:1	3 c	12
13	1 d	с	-	-		3 d	77

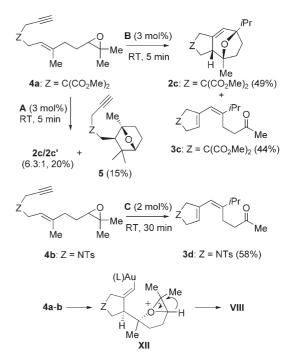
[[]a] Reactions at 23 °C with 3 mol% catalyst for 5–30 min (100% conversion). **A**: [Au(PPh₃)Cl]/AgSbF₆, **B**: [Au(PPh₃)(MeCN)]SbF₆, t-Bu, t



reactions were completed at room temperature in 5–30 min. Aldehyde **1a** gave a mixture of tricycle **2a** (35%) and ketone **3a** (50%) with [AuCl(PPh₃)]/AgSbF₆ (catalyst **A**; Table 1, entry 1). Similar results were obtained with [Au(PPh₃)-(MeCN)]SbF₆ (catalyst **B**) and cationic complex $C^{[3]}$ (Table 1, entries 2 and 3). A yield of 58% for **2a** was achieved by using AuCl itself (Table 1, entry 4). In the cyclization of ketones **1b** and **1c**, **2'b**,**c** were obtained as minor isomers, although their formation could be minimized by using Au^I catalysts **B** or **C** (Table 1, entries 6/7 and 10/11). Results with catalysts **A** and **B** were not identical (compare entries 5/6 and 9/10), which suggest that Ag^I may not be innocent in some of these cyclizations.^[9] The best yields of **2b–c** were achieved with AuCl (Table 1, entries 8 and 12). Substrate **1d** led only to ketone **3d** (77%; Table 1, entry 13).

The structures of **2a–d** were assigned by NMR spectroscopic analysis and by the X-ray diffraction determination of **2c**.^[10] The *cis* configuration of ketones **3a–d** was based on the coupling constant ${}^{3}J = 11.6$ Hz, as observed for **3a** and in NOESY experiments.

The carbonyl group acts as an internal nucleophile in the cyclizations of Table 1, as shown in **VII** (Scheme 3), thus


Scheme 3. Proposed mechanism for the cyclization of enynes 1 a-c.

forming oxonium cation **VIII**, which undergoes a Prins reaction^[11] to give **IX**. Intermediate **IX** is a substituted 4tetrahydropyranyl cation, which has been shown to be aromatic.^[12] Elimination of the metal fragment forms tricycles **2a–c**. Alternatively, an elimination with fragmentation of the seven-membered ring via **X** leads to carbonyl compounds **3a– d**. Minor epimers **2'b, c** can arise by a competitive 2-oxonia– Cope rearrangement^[13] via **X** and **XI**.

The higher selectivity for the formation of tricycles **2a–c** using AuCl as the catalyst (Table 1, entries 4, 8, and 12), relative to the cationic complexes **A–C** could be explained by the faster elimination of the more electron-rich metal center in **IX**, whereas for complexes **A–C** the metal center does not bear a negative charge in intermediates **VIII–XI**.

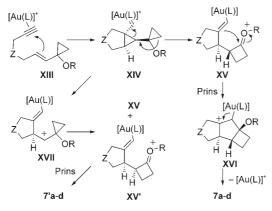
Interestingly, **2c** was also obtained from epoxide **4a** by using catalyst **B** (Scheme 4).^[14] On the other hand, the reaction of **4a** with catalyst **A** gave a mixture of **2c/2'c** and oxonorbornane **5**, whose structure was confirmed by X-ray crystallography.^[10] Epoxide **4b** reacted with catalyst **C** to give ketone **3d**, a result similar to that from **1d** (Table 1, entry 13). The formation of **2c** and **3c**, **d** could proceed through intermediates **XII**, which suffer C–O bond cleavage followed by a 1,2-hydrogen shift to form **VIII** ($\mathbf{R} = i\mathbf{Pr}$). Model epoxides do not isomerize to the corresponding carbonyl compounds under these reaction conditions.^[15] We did not observed the direct addition of the ketone or the epoxide to the alkyne in any of these cyclizations.^[16]

A related Prins cyclization, which leads to tricycles with an octahydrocyclobuta[*a*]pentalene skeleton (see Scheme 2), was uncovered in the cyclization of cyclopropylenynes **6a**– $d^{[17-19]}$ (Table 2). Thus, the reaction of ethyl ether **6a** with Au¹ gave tricycles **7a**/**7'a** (Table 2, entries 1–3). Interestingly, *syn*-**7'a** was favored with catalyst **C** in the presence of traces of

Scheme 4. Gold-catalyzed reactions of epoxides 4a, b. Ts = p-toluene-methanesulfonate.

Table 2: Au¹-catalyzed reaction of enynes 6a-d.^[a]

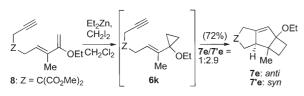
Z OEt (Au) OEt CH ₂ Cl ₂ Z		+ Z
6a: Z = C(CO ₂ Me) ₂ , R = H	7a-d	7'a-d
6b: Z = C(CO ₂ Me) ₂ , R = Me		
$6c: Z = \bigvee_{O}^{O} \bigvee_{S}^{L} , R = H$	6d: Z = NTs, F	२ = H


Entry	Enyne	[Au]	t	Product (ratio)	Yield [%]
1 ^[a]	6a	с	5 min	7a/7′a (1:1)	88
2 ^[b]	6a	с	5 min	7 a/7' a (1:8)	81
3 ^[b,c]	6a	с	5 min	7 a/7' a (1:1)	93
4 ^[b,d]	6a	AuCl	24 h	7 a/7' a (30:1) ^[e]	80 ^[e]
5 ^[a,f]	6 b	с	5 min	7′ b	44
6 ^[b,f]	6 b	с	5 min	7b/7'b (2.5:1)	39
7 ^[b,g]	6c	с	5 min	7c/7′c (3.2:1)	60
8 ^[b,h,d]	6c	AuCl	2 h	7c/7′c (12:1)	91
9 ^[b,g]	6 d	В	5 min	7 d/7′ d (2:1)	60

[a] Reaction carried out in CH₂Cl₂ (H₂O \approx 2 ppm) with 3 mol% catalyst at 23 °C. [b] Reaction with 3–5 mol% water. [c] Reaction with NH₄Cl (2 equiv). [d] Reaction at 0 °C. [e] Average of five runs and determined by ¹H NMR spectroscopic analysis. [f] E/Z=1:1. [g] Catalyst=2 mol%. [h] Catalyst=12 mol%.

water, whereas the use of AuCl led to the formation of **7a**, although the reaction was relatively slow (Table 2, entries 2 and 4). Low conversions (ca. 20%) were obtained when this reaction was carried out in the presence of 4-Å molecular sieves. Cycloprolylenynes **6b–d** reacted to give tricycles **7b–d** (Table 2, entries 5–9). Cyclobutanones were also formed as minor side products in these reactions.^[20,21]

A rationale for the results of Table 2 is provided in Scheme 5. Accordingly, **XIII** forms cyclopropyl metal carbene


Communications

Scheme 5. Proposed mechanism for the gold-catalyzed reaction of enynes **6a–d**.

XIV, which undergoes ring expansion to form **XV**. The alkenyl gold complex of **XV** could react with the oxonium cation to form **XVI**, which upon demetalation forms tricycles **7a–d** by a Prins reaction.^[11] The concerted pathway (**XIV** \rightarrow **XV**) is favored with AuCl as the catalyst, whereas cationic Au^I complexes apparently favor a nonconcerted reaction via cyclopropyl-stabilized cation **XVII**,^[22] which undergoes a non-stereospecific ring expansion to give mixtures of **7a–d**. **7'a–d**.^[23] However, as suggested by the dependence of the stereochemical outcome on the amount of water, we cannot exclude a pathway in which water opens intermediate **XIV** to form an alcohol, followed by a pinacol-type expansion. This process would result in an overall retention of configuration to form **XV**'.

Tricycles 7e/7'e were directly obtained when the synthesis of **6k** was attempted by the cyclopropanation of dienyne **8** with the Furukawa reagent^[24] (-65 \rightarrow 23 °C; Scheme 6). This result is consistent with the mechanistic hypothesis of Scheme 5, in which the nonconcerted pathway is favored with Zn^{II} through intermediates **XV**', thus leading to *syn,cis* diastereomer **7'e** as the major tricycle.

Scheme 6. Direct Zn^{II}-promoted cyclopropanation/cyclization of enyne **8**.

In summary, the alkenyl gold intermediate formed in the cyclization of enynes can be trapped in 5-*exo-dig* or 6-*endo-dig* Prins reactions to form an additional C–C bond. These Au¹-catalyzed cyclizations of functionalized enynes led to the ready assemblage of tricyclic carbon skeletons that are present in a number of naturally occurring compounds. Thus, for example, tricycle **2c**, which possesses the same skeleton and relative configuration of β -kessyl ketone and orientalol E (Scheme 2), can be obtained in high yield in a

single step. The transformation of 1a-d into ketones 3a-d represents a new type of skeletal rearrangement of enynes.

Received: April 21, 2006 Published online: July 19, 2006

Keywords: cyclization \cdot enynes \cdot gold \cdot Prins reaction \cdot rearrangements

- Reviews of transition-metal-catalyzed reaction of enynes: a) G. C. Lloyd-Jones, Org. Biomol. Chem. 2003, 1, 215-236; b) C. Aubert, O. Buisine, M. Malacria, Chem. Rev. 2002, 102, 813-834; c) S. T. Diver, A. Giessert, Chem. Rev. 2004, 104, 1317-1382; d) A. M. Echavarren, C. Nevado, Chem. Soc. Rev. 2004, 33, 431-436; e) S. Ma, S. Yu, Z. Gu, Angew. Chem. 2006, 118, 206-209; Angew. Chem. Int. Ed. 2006, 45, 200-203; f) C. Nieto-Oberhuber, S. López, E. Jiménez-Núñez, A. M. Echavarren, Chem. Eur. J., DOI: 10.10221/chem.200600174.
- [2] a) M. Méndez, M. P. Muñoz, A. M. Echavarren, J. Am. Chem. Soc. 2000, 122, 11549-11550; b) M. Méndez, M. P. Muñoz, C. Nevado, D. J. Cárdenas, A. M. Echavarren, J. Am. Chem. Soc. 2001, 123, 10511-10520; c) C. Nevado, D. J. Cárdenas, A. M. Echavarren, Chem. Eur. J. 2003, 9, 2627-2635; d) C. Nevado, L. Charruault, V. Michelet, C. Nieto-Oberhuber, M. P. Muñoz, M. Méndez, M.-N. Rager, J. P. Genêt, A. M. Echavarren, Eur. J. Org. Chem. 2003, 706-713.
- a) C. Nevado, D. J. Cárdenas, A. M. Echavarren, Chem. Eur. J. [3] 2003, 9, 2627-2635; b) C. Nieto-Oberhuber, M. P. Muñoz, E. Buñuel, C. Nevado, D. J. Cárdenas, A. M. Echavarren, Angew. Chem. 2004, 116, 2456-2460; Angew. Chem. Int. Ed. 2004, 43, 2402-2406; c) C. Nieto-Oberhuber, S. López, A. M. Echavarren, J. Am. Chem. Soc. 2005, 127, 6178-6179; d) C. Nieto-Oberhuber, S. López, M. P. Muñoz, D. J. Cárdenas, E. Buñuel, C. Nevado, A. M. Echavarren, Angew. Chem. 2005, 117, 6302-6304; Angew. Chem. Int. Ed. 2005, 44, 6146-6148; e) M. P. Muñoz, J. Adrio, J. C. Carretero; A. M. Echavarren, Organometallics 2005, 24, 1293-1300; f) C. Nieto-Oberhuber, S. López, M. P. Muñoz, E. Jiménez-Núñez, E. Buñuel, D. J. Cárdenas, A. M. Echavarren, Chem. Eur. J. 2006, 12, 1694-1702; g) C. Nieto-Oberhuber, M. P. Muñoz, S. López, E. Jiménez-Núñez, C. Nevado, E. Herrero-Gómez, M. Raducan, A. M. Echavarren, Chem. Eur. J. 2006, 12, 1677-1693.
- [4] a) V. Mamane, T. Gress, H. Krause, A. Fürstner, J. Am. Chem. Soc. 2004, 126, 8654–8655; b) L. Zhang, S. A. Kozmin, J. Am. Chem. Soc. 2004, 126, 11806–11807; c) M. R. Luzung, J. P. Markham, F. D. Toste, J. Am. Chem. Soc. 2004, 126, 10858– 10859; d) see also: A. S. K. Hashmi, M. C. Blanco, E. Kurpejovic, W. Frey, J. W. Bats, Adv. Synth. Catal. 2006, 348, 709–713.
- [5] a) H. Hikino, Y. Takeshita, H. Hikino, T. Takemoto, S. Ito, *Chem. Pharm. Bull.* **1967**, *15*, 485–489; b) G.-P. Peng, G. Tian, X.-F. Huang, F.-C. Lou, *Phytochemistry* **2003**, *63*, 877–881.
- [6] H. Akasaka, Y. Shiono, T. Murayama, M. Ikeda, *Helv. Chim. Acta* 2005, 88, 2944–2950.
- [7] a) L. Zhang, M. Koreeda, Org. Lett. 2002, 4, 3755-3758; T. Bach, A. Spiegel, Synlett 2002, 1305-1307.
- [8] a) D. G. Taber, K. J. Frankowski, Org. Lett. 2005, 7, 6417-6421;
 b) G. Mehta, K. Screenivas, Tetrahedron Lett. 2002, 43, 3319-3321;
 c) E. Piers, A. Orellana, Synthesis 2001, 2138-2142;
 d) S. Fietz-Razavian, S. Schulz, I. Dix, P. G. Jones, Chem. Commun. 2001, 2154-2155.
- [9] For an example in which Ag¹ catalyzes an additional process, see:
 C. Nevado, A. M. Echavarren, *Chem. Eur. J.* 2005, *11*, 3155–3164.
- [10] See the Supporting Information for details.

Angew. Chem. Int. Ed. 2006, 45, 5452-5455

- [11] General references: a) L. E. Overman, L. D. Pennington, *J. Org. Chem.* 2003, 68, 7143-7157; b) R. Jasti, C. D. Anderson, S. D. Rychnovsky, *J. Am. Chem. Soc.* 2005, *127*, 9939-9945.
- [12] R. W. Alder, J. N. Harvey, M. T. Oakley, J. Am. Chem. Soc. 2002, 124, 4960-4961.
- [13] S. D. Rychnovsky, S. Marumoto, J. J. Jaber, Org. Lett. 2001, 3, 3815–3818.
- [14] For examples in which epoxides were used instead of carbonyl compounds in the Prins reactions, see: a) J. Li, C.-J. Li, *Tetrahedron Lett.* 2001, 42, 793–796; b) A. P. Dobbs, S. Martinović, *Tetrahedron Lett.* 2002, 43, 7055–7057.
- [15] See also: D. Xing, B. Guan, G. Cai, Z. Fang, L. Yang, Z. Shi, Org. Lett. 2006, 8, 693–696.
- [16] a) A. S. K. Hashmi, L. Schwarz, J.-H. Choi, T. M. Frost, Angew. Chem. 2000, 112, 2382–2385; Angew. Chem. Int. Ed. 2000, 39, 2285–2288; b) A. S. K. Hashmi, P. Sinha, Adv. Synth. Catal. 2004, 346, 432–438.
- [17] Rh¹-catalyzed reaction of cyclopropylenynes: a) P. A. Wender, H. Takahashi, B. Witulski, *J. Am. Chem. Soc.* 1995, *117*, 4720–4721; b) Z.-X. Yu, P. A. Wender, K. N. Houk, *J. Am. Chem. Soc.* 2004, *126*, 9154–9155, and references therein.
- [18] Ru^{II}-catalyzed reaction of cyclopropylenynes: a) B. M. Trost,
 F. D. Toste, H. Shen, *J. Am. Chem. Soc.* 2000, *122*, 2379–2380;
 b) B. M. Trost, H. C. Shen, D. B. Horne, F. D. Toste, B. G. Steinmetz, C. Korandin, *Chem. Eur. J.* 2005, *11*, 2577–2590.
- [19] Ni¹-catalyzed cyclization of cyclopropylenynes: G. Zuo, J. Louie, J. Am. Chem. Soc. 2005, 127, 5798–5799.
- [20] Reaction of silyloxy analogues of 6a-d led to cyclobutanones by ring expansion of the cyclopropyl ring; details will be published in a full account of these results.
- [21] Ring expansion of alkynylcyclopropanols catalyzed by Au¹: J. P. Markham, S. T. Staben, F. D. Toste, *J. Am. Chem. Soc.* 2005, 127, 9708–9709.
- [22] J. Casanova, D. R. Kent, W. A. Goddard, J. D. Roberts, Proc. Natl. Acad. Sci. USA 2003, 100, 15–19.
- [23] Preliminary DFT calculations show a carbocationic structure for intermediates in which $[Au(L)] = [Au(PH_3)]$, whereas for $[Au(L)] = [AuCl]^-$ the intermediates resemble cyclopropyl gold(I) carbenes, such as **XIV**: D. J. Cárdenas, unpublished results.
- [24] J. Furukawa, N. Kawabata, J. Nishimura, *Tetrahedron* 1968, 24, 53-58.